Cargando…

Contaminants of Emerging Concern in Bats from the Northeastern United States

We analyzed bat carcasses (Myotis lucifugus, M. sodalis, M. septentrionalis, and Eptesicus fuscus) from the northeastern United States for contaminants of emerging concern (CECs) such as polybrominated diphenyl ethers (PBDEs), and pharmaceuticals and personal care products. The CECs detected most fr...

Descripción completa

Detalles Bibliográficos
Autores principales: Secord, Anne L., Patnode, Kathleen A., Carter, Charles, Redman, Eric, Gefell, Daniel J., Major, Andrew R., Sparks, Daniel W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600474/
https://www.ncbi.nlm.nih.gov/pubmed/26245185
http://dx.doi.org/10.1007/s00244-015-0196-x
Descripción
Sumario:We analyzed bat carcasses (Myotis lucifugus, M. sodalis, M. septentrionalis, and Eptesicus fuscus) from the northeastern United States for contaminants of emerging concern (CECs) such as polybrominated diphenyl ethers (PBDEs), and pharmaceuticals and personal care products. The CECs detected most frequently in samples were PBDEs (100 %), salicylic acid (81 %), thiabendazole (50 %), and caffeine (23 %). Other compounds detected in at least 15 % of bat samples were digoxigenin, ibuprofen, warfarin, penicillin V, testosterone, and N,N-diethyl-meta-toluamide (DEET). The CECs present at the highest geometric mean wet weight concentrations in bat carcasses were bisphenol A (397 ng/g), ΣPDBE congeners 28, 47, 99, 100, 153, and 154 (83.5 ng/g), triclosan (71.3 n/g), caffeine (68.3 ng/g), salicylic acid (66.4 ng/g), warfarin (57.6 ng/g), sulfathiazole (55.8 ng/g), tris(1-chloro-2-propyl) phosphate (53.8 ng/g), and DEET (37.2 ng/g). Bats frequently forage in aquatic and terrestrial habitats that may be subjected to discharges from wastewater-treatment plants, agricultural operations, and other point and nonpoint sources of contaminants. This study shows that some CECs are accumulating in the tissue of bats. We propose that CECs detected in bats have the potential to affect a number of physiological systems in bats including hibernation, immune function, and response to white-nose syndrome, a fungal disease causing population-level impacts to bats. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00244-015-0196-x) contains supplementary material, which is available to authorized users.