Cargando…

Terahertz-driven linear electron acceleration

The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m(−1) gradients. Electron accelerators driven with optical or infrared sources have demonstrated...

Descripción completa

Detalles Bibliográficos
Autores principales: Nanni, Emilio A., Huang, Wenqian R., Hong, Kyung-Han, Ravi, Koustuban, Fallahi, Arya, Moriena, Gustavo, Dwayne Miller, R. J., Kärtner, Franz X.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600735/
https://www.ncbi.nlm.nih.gov/pubmed/26439410
http://dx.doi.org/10.1038/ncomms9486
_version_ 1782394461749248000
author Nanni, Emilio A.
Huang, Wenqian R.
Hong, Kyung-Han
Ravi, Koustuban
Fallahi, Arya
Moriena, Gustavo
Dwayne Miller, R. J.
Kärtner, Franz X.
author_facet Nanni, Emilio A.
Huang, Wenqian R.
Hong, Kyung-Han
Ravi, Koustuban
Fallahi, Arya
Moriena, Gustavo
Dwayne Miller, R. J.
Kärtner, Franz X.
author_sort Nanni, Emilio A.
collection PubMed
description The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m(−1) gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.
format Online
Article
Text
id pubmed-4600735
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-46007352015-10-21 Terahertz-driven linear electron acceleration Nanni, Emilio A. Huang, Wenqian R. Hong, Kyung-Han Ravi, Koustuban Fallahi, Arya Moriena, Gustavo Dwayne Miller, R. J. Kärtner, Franz X. Nat Commun Article The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m(−1) gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. Nature Pub. Group 2015-10-06 /pmc/articles/PMC4600735/ /pubmed/26439410 http://dx.doi.org/10.1038/ncomms9486 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Nanni, Emilio A.
Huang, Wenqian R.
Hong, Kyung-Han
Ravi, Koustuban
Fallahi, Arya
Moriena, Gustavo
Dwayne Miller, R. J.
Kärtner, Franz X.
Terahertz-driven linear electron acceleration
title Terahertz-driven linear electron acceleration
title_full Terahertz-driven linear electron acceleration
title_fullStr Terahertz-driven linear electron acceleration
title_full_unstemmed Terahertz-driven linear electron acceleration
title_short Terahertz-driven linear electron acceleration
title_sort terahertz-driven linear electron acceleration
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600735/
https://www.ncbi.nlm.nih.gov/pubmed/26439410
http://dx.doi.org/10.1038/ncomms9486
work_keys_str_mv AT nanniemilioa terahertzdrivenlinearelectronacceleration
AT huangwenqianr terahertzdrivenlinearelectronacceleration
AT hongkyunghan terahertzdrivenlinearelectronacceleration
AT ravikoustuban terahertzdrivenlinearelectronacceleration
AT fallahiarya terahertzdrivenlinearelectronacceleration
AT morienagustavo terahertzdrivenlinearelectronacceleration
AT dwaynemillerrj terahertzdrivenlinearelectronacceleration
AT kartnerfranzx terahertzdrivenlinearelectronacceleration