Cargando…
Terahertz-driven linear electron acceleration
The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m(−1) gradients. Electron accelerators driven with optical or infrared sources have demonstrated...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600735/ https://www.ncbi.nlm.nih.gov/pubmed/26439410 http://dx.doi.org/10.1038/ncomms9486 |
_version_ | 1782394461749248000 |
---|---|
author | Nanni, Emilio A. Huang, Wenqian R. Hong, Kyung-Han Ravi, Koustuban Fallahi, Arya Moriena, Gustavo Dwayne Miller, R. J. Kärtner, Franz X. |
author_facet | Nanni, Emilio A. Huang, Wenqian R. Hong, Kyung-Han Ravi, Koustuban Fallahi, Arya Moriena, Gustavo Dwayne Miller, R. J. Kärtner, Franz X. |
author_sort | Nanni, Emilio A. |
collection | PubMed |
description | The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m(−1) gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. |
format | Online Article Text |
id | pubmed-4600735 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-46007352015-10-21 Terahertz-driven linear electron acceleration Nanni, Emilio A. Huang, Wenqian R. Hong, Kyung-Han Ravi, Koustuban Fallahi, Arya Moriena, Gustavo Dwayne Miller, R. J. Kärtner, Franz X. Nat Commun Article The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m(−1) gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. Nature Pub. Group 2015-10-06 /pmc/articles/PMC4600735/ /pubmed/26439410 http://dx.doi.org/10.1038/ncomms9486 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Nanni, Emilio A. Huang, Wenqian R. Hong, Kyung-Han Ravi, Koustuban Fallahi, Arya Moriena, Gustavo Dwayne Miller, R. J. Kärtner, Franz X. Terahertz-driven linear electron acceleration |
title | Terahertz-driven linear electron acceleration |
title_full | Terahertz-driven linear electron acceleration |
title_fullStr | Terahertz-driven linear electron acceleration |
title_full_unstemmed | Terahertz-driven linear electron acceleration |
title_short | Terahertz-driven linear electron acceleration |
title_sort | terahertz-driven linear electron acceleration |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600735/ https://www.ncbi.nlm.nih.gov/pubmed/26439410 http://dx.doi.org/10.1038/ncomms9486 |
work_keys_str_mv | AT nanniemilioa terahertzdrivenlinearelectronacceleration AT huangwenqianr terahertzdrivenlinearelectronacceleration AT hongkyunghan terahertzdrivenlinearelectronacceleration AT ravikoustuban terahertzdrivenlinearelectronacceleration AT fallahiarya terahertzdrivenlinearelectronacceleration AT morienagustavo terahertzdrivenlinearelectronacceleration AT dwaynemillerrj terahertzdrivenlinearelectronacceleration AT kartnerfranzx terahertzdrivenlinearelectronacceleration |