Cargando…
Systematic analysis of somatic mutations impacting gene expression in 12 tumour types
We present a novel hierarchical Bayes statistical model, xseq, to systematically quantify the impact of somatic mutations on expression profiles. We establish the theoretical framework and robust inference characteristics of the method using computational benchmarking. We then use xseq to analyse th...
Autores principales: | Ding, Jiarui, McConechy, Melissa K., Horlings, Hugo M., Ha, Gavin, Chun Chan, Fong, Funnell, Tyler, Mullaly, Sarah C., Reimand, Jüri, Bashashati, Ali, Bader, Gary D., Huntsman, David, Aparicio, Samuel, Condon, Anne, Shah, Sohrab P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600750/ https://www.ncbi.nlm.nih.gov/pubmed/26436532 http://dx.doi.org/10.1038/ncomms9554 |
Ejemplares similares
-
DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer
por: Bashashati, Ali, et al.
Publicado: (2012) -
Feature-based classifiers for somatic mutation detection in tumour–normal paired sequencing data
por: Ding, Jiarui, et al.
Publicado: (2012) -
Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers
por: Reimand, Jüri, et al.
Publicado: (2013) -
Systematic analysis of somatic mutations in phosphorylation signaling predicts novel
cancer drivers
por: Reimand, Jüri, et al.
Publicado: (2014) -
JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data
por: Roth, Andrew, et al.
Publicado: (2012)