Cargando…

Mismatch negativity in common marmosets: Whole-cortical recordings with multi-channel electrocorticograms

Mismatch negativity (MMN) is a component of event-related potentials (ERPs) evoked by violations of regularity in sensory stimulus-series in humans. Recently, the MMN has received attention as a clinical and translatable biomarker of psychiatric disorders such as schizophrenia, and for the developme...

Descripción completa

Detalles Bibliográficos
Autores principales: Komatsu, Misako, Takaura, Kana, Fujii, Naotaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601015/
https://www.ncbi.nlm.nih.gov/pubmed/26456147
http://dx.doi.org/10.1038/srep15006
Descripción
Sumario:Mismatch negativity (MMN) is a component of event-related potentials (ERPs) evoked by violations of regularity in sensory stimulus-series in humans. Recently, the MMN has received attention as a clinical and translatable biomarker of psychiatric disorders such as schizophrenia, and for the development animal models of these psychiatric disorders. In this study, we investigated the generation of MMN in common marmosets, which are an important non-human primate model with genetic manipulability. We recorded the electrocorticograms (ECoGs) from two common marmosets with epidurally implanted electrodes covering a wide range of cortical regions. ECoG recordings were conducted in a passive listening condition with a roving oddball paradigm. We compared the ERPs evoked by repeatedly presented standard stimuli and those evoked by the deviant stimuli. Significant differences in the ERPs were observed in several cortical areas. In particular, deviant stimuli elicited larger negative activity than standard stimuli in the temporal area. In addition, the latency and polarity of the activity were comparable to human MMNs. This is thus the first report of MMN-like activity in common marmosets. Our findings have the potential to advance future gene-manipulation studies that aim to establish non-human primate models of schizophrenia.