Cargando…
PsyAcoustX: A flexible MATLAB(®) package for psychoacoustics research
The demands of modern psychophysical studies require precise stimulus delivery and flexible platforms for experimental control. Here, we describe PsyAcoustX, a new, freely available suite of software tools written in the MATLAB(®) environment to conduct psychoacoustics research on a standard PC. Psy...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601020/ https://www.ncbi.nlm.nih.gov/pubmed/26528199 http://dx.doi.org/10.3389/fpsyg.2015.01498 |
Sumario: | The demands of modern psychophysical studies require precise stimulus delivery and flexible platforms for experimental control. Here, we describe PsyAcoustX, a new, freely available suite of software tools written in the MATLAB(®) environment to conduct psychoacoustics research on a standard PC. PsyAcoustX provides a flexible platform to generate and present auditory stimuli in real time and record users’ behavioral responses. Data are automatically logged by stimulus condition and aggregated in an exported spreadsheet for offline analysis. Detection thresholds can be measured adaptively under basic and complex auditory masking tasks and other paradigms (e.g., amplitude modulation detection) within minutes. The flexibility of the module offers experimenters access to nearly every conceivable combination of stimulus parameters (e.g., probe-masker relations). Example behavioral applications are highlighted including the measurement of audiometric thresholds, basic simultaneous and non-simultaneous (i.e., forward and backward) masking paradigms, gap detection, and amplitude modulation detection. Examples of these measurements are provided including the psychoacoustic phenomena of temporal overshoot, psychophysical tuning curves, and temporal modulation transfer functions. Importantly, the core design of PsyAcoustX is easily modifiable, allowing users the ability to adapt its basic structure and create additional modules for measuring discrimination/detection thresholds for other auditory attributes (e.g., pitch, intensity, etc.) or binaural paradigms. |
---|