Cargando…
Exploiting Small Leakages in Masks to Turn a Second-Order Attack into a First-Order Attack and Improved Rotating Substitution Box Masking with Linear Code Cosets
Masking countermeasures, used to thwart side-channel attacks, have been shown to be vulnerable to mask-extraction attacks. State-of-the-art mask-extraction attacks on the Advanced Encryption Standard (AES) algorithm target S-Box recomputation schemes but have not been applied to scenarios where S-Bo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601566/ https://www.ncbi.nlm.nih.gov/pubmed/26491717 http://dx.doi.org/10.1155/2015/743618 |
Sumario: | Masking countermeasures, used to thwart side-channel attacks, have been shown to be vulnerable to mask-extraction attacks. State-of-the-art mask-extraction attacks on the Advanced Encryption Standard (AES) algorithm target S-Box recomputation schemes but have not been applied to scenarios where S-Boxes are precomputed offline. We propose an attack targeting precomputed S-Boxes stored in nonvolatile memory. Our attack targets AES implemented in software protected by a low entropy masking scheme and recovers the masks with 91% success rate. Recovering the secret key requires fewer power traces (in fact, by at least two orders of magnitude) compared to a classical second-order attack. Moreover, we show that this attack remains viable in a noisy environment or with a reduced number of leakage points. Eventually, we specify a method to enhance the countermeasure by selecting a suitable coset of the masks set. |
---|