Cargando…
Prioritization Of Nonsynonymous Single Nucleotide Variants For Exome Sequencing Studies Via Integrative Learning On Multiple Genomic Data
The rapid advancement of next generation sequencing technology has greatly accelerated the progress for understanding human inherited diseases via such innovations as exome sequencing. Nevertheless, the identification of causative variants from sequencing data remains a great challenge. Traditional...
Autores principales: | Wu, Mengmeng, Wu, Jiaxin, Chen, Ting, Jiang, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4602202/ https://www.ncbi.nlm.nih.gov/pubmed/26459872 http://dx.doi.org/10.1038/srep14955 |
Ejemplares similares
-
Integrating Multiple Genomic Data to Predict Disease-Causing Nonsynonymous Single Nucleotide Variants in Exome Sequencing Studies
por: Wu, Jiaxin, et al.
Publicado: (2014) -
Prediction of Deleterious Nonsynonymous Single-Nucleotide Polymorphism for Human Diseases
por: Wu, Jiaxin, et al.
Publicado: (2013) -
Global inference of disease-causing single nucleotide variants from exome sequencing data
por: Wu, Mengmeng, et al.
Publicado: (2016) -
Leveraging multiple genomic data to prioritize disease-causing indels from exome sequencing data
por: Wu, Mengmeng, et al.
Publicado: (2017) -
Quantifying single nucleotide variant detection sensitivity in exome sequencing
por: Meynert, Alison M, et al.
Publicado: (2013)