Cargando…
Does Habituation Differ in Chronic Low Back Pain Subjects Compared to Pain-Free Controls? A Cross-Sectional Pain Rating ERP Study Reanalyzed with the ERFIA Multilevel Method
The objective of the present study was to investigate cortical differences between chronic low back pain (CLBP) subjects and pain-free controls with respect to habituation and processing of stimulus intensity. The use of a novel event-related fixed-interval areas (ERFIA) multilevel technique enables...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4602586/ https://www.ncbi.nlm.nih.gov/pubmed/25984683 http://dx.doi.org/10.1097/MD.0000000000000865 |
Sumario: | The objective of the present study was to investigate cortical differences between chronic low back pain (CLBP) subjects and pain-free controls with respect to habituation and processing of stimulus intensity. The use of a novel event-related fixed-interval areas (ERFIA) multilevel technique enables the analysis of event-related electroencephalogram (EEG) of the whole post stimulus range at a single trial level. This technique makes it possible to disentangle the cortical processes of habituation and stimulus intensity. In a cross-sectional study, 78 individuals with CLBP and 85 pain-free controls underwent a rating paradigm of 150 nonpainful and painful somatosensory electrical stimuli. For each trial, the entire epoch was partitioned into 20-ms ERFIAs, which acted as dependent variables in a multilevel analysis. The variability of each consecutive ERFIA period was modeled with a set of predictor variables, including 3 forms of habituation and stimulus intensity. Seventy-six pain-free controls and 65 CLBP subjects were eligible for analysis. CLBP subjects showed a significantly decreased linear habituation at 340 to 460 ms in the midline electrodes and C3 (Ps < .05) and had a significantly more pronounced dishabituation for the regions of 400 to 460 ms and 800 to 820 ms for all electrodes, except for T3 and T4 (Ps < .05). No significant group differences for stimulus intensity processing were observed. In this study, group differences with respect to linear habituation and dishabituation were demonstrated. By means of the ERFIA multilevel technique, habituation effects were found in a broad post stimulus range and were not solely limited to peaks. This study suggests that habituation may be a key mechanism involved in the transition process to chronic pain. Future studies with a longitudinal design are required to solve this issue. |
---|