Cargando…

Organization of the Mammalian Locomotor CPG: Review of Computational Model and Circuit Architectures Based on Genetically Identified Spinal Interneurons

The organization of neural circuits that form the locomotor central pattern generator (CPG) and provide flexor–extensor and left–right coordination of neuronal activity remains largely unknown. However, significant progress has been made in the molecular/genetic identification of several types of sp...

Descripción completa

Detalles Bibliográficos
Autores principales: Rybak, Ilya A., Dougherty, Kimberly J., Shevtsova, Natalia A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603253/
https://www.ncbi.nlm.nih.gov/pubmed/26478909
http://dx.doi.org/10.1523/ENEURO.0069-15.2015
Descripción
Sumario:The organization of neural circuits that form the locomotor central pattern generator (CPG) and provide flexor–extensor and left–right coordination of neuronal activity remains largely unknown. However, significant progress has been made in the molecular/genetic identification of several types of spinal interneurons, including V0 (V0(D) and V0(V) subtypes), V1, V2a, V2b, V3, and Shox2, among others. The possible functional roles of these interneurons can be suggested from changes in the locomotor pattern generated in mutant mice lacking particular neuron types. Computational modeling of spinal circuits may complement these studies by bringing together data from different experimental studies and proposing the possible connectivity of these interneurons that may define rhythm generation, flexor–extensor interactions on each side of the cord, and commissural interactions between left and right circuits. This review focuses on the analysis of potential architectures of spinal circuits that can reproduce recent results and suggest common explanations for a series of experimental data on genetically identified spinal interneurons, including the consequences of their genetic ablation, and provides important insights into the organization of the spinal CPG and neural control of locomotion.