Cargando…
Machine Learning Methods for Predicting HLA–Peptide Binding Activity
As major histocompatibility complexes in humans, the human leukocyte antigens (HLAs) have important functions to present antigen peptides onto T-cell receptors for immunological recognition and responses. Interpreting and predicting HLA–peptide binding are important to study T-cell epitopes, immune...
Autores principales: | Luo, Heng, Ye, Hao, Ng, Hui Wen, Shi, Leming, Tong, Weida, Mendrick, Donna L., Hong, Huixiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603527/ https://www.ncbi.nlm.nih.gov/pubmed/26512199 http://dx.doi.org/10.4137/BBI.S29466 |
Ejemplares similares
-
Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis
por: Luo, Heng, et al.
Publicado: (2015) -
sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides
por: Luo, Heng, et al.
Publicado: (2016) -
Assessment of Prediction Confidence and Domain Extrapolation of Two Structure–Activity Relationship Models for Predicting Estrogen Receptor Binding Activity
por: Tong, Weida, et al.
Publicado: (2004) -
Pathway Analysis Revealed Potential Diverse Health Impacts of Flavonoids that Bind Estrogen Receptors
por: Ye, Hao, et al.
Publicado: (2016) -
Very Important Pool (VIP) genes – an application for microarray-based molecular signatures
por: Su, Zhenqiang, et al.
Publicado: (2008)