Cargando…

Intronic sequences are required for AINTEGUMENTA-LIKE6 expression in Arabidopsis flowers

BACKGROUND: The AINTEGUMENTA-LIKE6/PLETHORA3 (AIL6/PLT3) gene of Arabidopsis thaliana is a key regulator of growth and patterning in both shoots and roots. AIL6 encodes an AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) transcription factor that is expressed in the root stem cell niche, the peripheral region o...

Descripción completa

Detalles Bibliográficos
Autor principal: Krizek, Beth A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603582/
https://www.ncbi.nlm.nih.gov/pubmed/26459062
http://dx.doi.org/10.1186/s13104-015-1537-6
Descripción
Sumario:BACKGROUND: The AINTEGUMENTA-LIKE6/PLETHORA3 (AIL6/PLT3) gene of Arabidopsis thaliana is a key regulator of growth and patterning in both shoots and roots. AIL6 encodes an AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) transcription factor that is expressed in the root stem cell niche, the peripheral region of the shoot apical meristem and young lateral organ primordia. In flowers, AIL6 acts redundantly with AINTEGUMENTA (ANT) to regulate floral organ positioning, growth, identity and patterning. Experiments were undertaken to define the genomic regions required for AIL6 function and expression in flowers. RESULTS: Transgenic plants expressing a copy of the coding region of AIL6 in the context of 7.7 kb of 5′ sequence and 919 bp of 3′ sequence (AIL6:cAIL6-3′) fail to fully complement AIL6 function when assayed in the ant-4 ail6-2 double mutant background. In contrast, a genomic copy of AIL6 with the same amount of 5′ and 3′ sequence (AIL6:gAIL6-3′) can fully complement ant-4 ail6-2. In addition, a genomic copy of AIL6 with 590 bp of 5′ sequence and 919 bp of 3′ sequence (AIL6m:gAIL6-3′) complements ant-4 ail6-2 and contains all regulatory elements needed to confer normal AIL6 expression in inflorescences. Efforts to map cis-regulatory elements reveal that the third intron of AIL6 contains enhancer elements that confer expression in young flowers but in a broader pattern than that of AIL6 mRNA in wild-type flowers. Some AIL6:gAIL6-3′ and AIL6m:gAIL6-3′ lines confer an over-rescue phenotype in the ant-4 ail6-2 background that is correlated with higher levels of AIL6 mRNA accumulation. CONCLUSIONS: The results presented here indicate that AIL6 intronic sequences serve as transcriptional enhancer elements. In addition, the results show that increased expression of AIL6 can partially compensate for loss of ANT function in flowers.