Cargando…
Non-Band-Gap Photoexcitation of Hydroxylated TiO(2)
[Image: see text] The photochemistry of TiO(2) has been studied intensively since it was discovered that TiO(2) can act as a photocatalyst. Nevertheless, it has proven difficult to establish the detailed charge-transfer processes involved, partly because the excited states involved are difficult to...
Autores principales: | Zhang, Yu, Payne, Daniel T., Pang, Chi L., Fielding, Helen H., Thornton, Geoff |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2015
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4603613/ https://www.ncbi.nlm.nih.gov/pubmed/26267712 http://dx.doi.org/10.1021/acs.jpclett.5b01508 |
Ejemplares similares
-
Chemical Modification of Polaronic States in Anatase
TiO(2)(101)
por: Tanner, Alex J., et al.
Publicado: (2021) -
Creating Excess Electrons at the Anatase TiO(2)(101) Surface
por: Payne, D. T., et al.
Publicado: (2016) -
Role of Adsorbed Water on Charge Carrier Dynamics in Photoexcited
TiO(2)
por: Litke, Anton, et al.
Publicado: (2017) -
Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO(2)
por: Waterhouse, G. I. N., et al.
Publicado: (2013) -
Polaron-Adsorbate Coupling at the TiO(2)(110)-Carboxylate
Interface
por: Tanner, Alex J., et al.
Publicado: (2021)