Cargando…
A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements
V1 and V2b interneurons (INs) are essential for the production of an alternating flexor–extensor motor output. Using a tripartite genetic system to selectively ablate either V1 or V2b INs in the caudal spinal cord and assess their specific functions in awake behaving animals, we find that V1 and V2b...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4604447/ https://www.ncbi.nlm.nih.gov/pubmed/26465208 http://dx.doi.org/10.7554/eLife.04718 |
_version_ | 1782395053655719936 |
---|---|
author | Britz, Olivier Zhang, Jingming Grossmann, Katja S Dyck, Jason Kim, Jun C Dymecki, Susan Gosgnach, Simon Goulding, Martyn |
author_facet | Britz, Olivier Zhang, Jingming Grossmann, Katja S Dyck, Jason Kim, Jun C Dymecki, Susan Gosgnach, Simon Goulding, Martyn |
author_sort | Britz, Olivier |
collection | PubMed |
description | V1 and V2b interneurons (INs) are essential for the production of an alternating flexor–extensor motor output. Using a tripartite genetic system to selectively ablate either V1 or V2b INs in the caudal spinal cord and assess their specific functions in awake behaving animals, we find that V1 and V2b INs function in an opposing manner to control flexor–extensor-driven movements. Ablation of V1 INs results in limb hyperflexion, suggesting that V1 IN-derived inhibition is needed for proper extension movements of the limb. The loss of V2b INs results in hindlimb hyperextension and a delay in the transition from stance phase to swing phase, demonstrating V2b INs are required for the timely initiation and execution of limb flexion movements. Our findings also reveal a bias in the innervation of flexor- and extensor-related motor neurons by V1 and V2b INs that likely contributes to their differential actions on flexion–extension movements. DOI: http://dx.doi.org/10.7554/eLife.04718.001 |
format | Online Article Text |
id | pubmed-4604447 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-46044472015-10-15 A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements Britz, Olivier Zhang, Jingming Grossmann, Katja S Dyck, Jason Kim, Jun C Dymecki, Susan Gosgnach, Simon Goulding, Martyn eLife Neuroscience V1 and V2b interneurons (INs) are essential for the production of an alternating flexor–extensor motor output. Using a tripartite genetic system to selectively ablate either V1 or V2b INs in the caudal spinal cord and assess their specific functions in awake behaving animals, we find that V1 and V2b INs function in an opposing manner to control flexor–extensor-driven movements. Ablation of V1 INs results in limb hyperflexion, suggesting that V1 IN-derived inhibition is needed for proper extension movements of the limb. The loss of V2b INs results in hindlimb hyperextension and a delay in the transition from stance phase to swing phase, demonstrating V2b INs are required for the timely initiation and execution of limb flexion movements. Our findings also reveal a bias in the innervation of flexor- and extensor-related motor neurons by V1 and V2b INs that likely contributes to their differential actions on flexion–extension movements. DOI: http://dx.doi.org/10.7554/eLife.04718.001 eLife Sciences Publications, Ltd 2015-10-14 /pmc/articles/PMC4604447/ /pubmed/26465208 http://dx.doi.org/10.7554/eLife.04718 Text en © 2015, Britz et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Neuroscience Britz, Olivier Zhang, Jingming Grossmann, Katja S Dyck, Jason Kim, Jun C Dymecki, Susan Gosgnach, Simon Goulding, Martyn A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements |
title | A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements |
title_full | A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements |
title_fullStr | A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements |
title_full_unstemmed | A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements |
title_short | A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements |
title_sort | genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4604447/ https://www.ncbi.nlm.nih.gov/pubmed/26465208 http://dx.doi.org/10.7554/eLife.04718 |
work_keys_str_mv | AT britzolivier ageneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements AT zhangjingming ageneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements AT grossmannkatjas ageneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements AT dyckjason ageneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements AT kimjunc ageneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements AT dymeckisusan ageneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements AT gosgnachsimon ageneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements AT gouldingmartyn ageneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements AT britzolivier geneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements AT zhangjingming geneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements AT grossmannkatjas geneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements AT dyckjason geneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements AT kimjunc geneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements AT dymeckisusan geneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements AT gosgnachsimon geneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements AT gouldingmartyn geneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements |