Cargando…

A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements

V1 and V2b interneurons (INs) are essential for the production of an alternating flexor–extensor motor output. Using a tripartite genetic system to selectively ablate either V1 or V2b INs in the caudal spinal cord and assess their specific functions in awake behaving animals, we find that V1 and V2b...

Descripción completa

Detalles Bibliográficos
Autores principales: Britz, Olivier, Zhang, Jingming, Grossmann, Katja S, Dyck, Jason, Kim, Jun C, Dymecki, Susan, Gosgnach, Simon, Goulding, Martyn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4604447/
https://www.ncbi.nlm.nih.gov/pubmed/26465208
http://dx.doi.org/10.7554/eLife.04718
_version_ 1782395053655719936
author Britz, Olivier
Zhang, Jingming
Grossmann, Katja S
Dyck, Jason
Kim, Jun C
Dymecki, Susan
Gosgnach, Simon
Goulding, Martyn
author_facet Britz, Olivier
Zhang, Jingming
Grossmann, Katja S
Dyck, Jason
Kim, Jun C
Dymecki, Susan
Gosgnach, Simon
Goulding, Martyn
author_sort Britz, Olivier
collection PubMed
description V1 and V2b interneurons (INs) are essential for the production of an alternating flexor–extensor motor output. Using a tripartite genetic system to selectively ablate either V1 or V2b INs in the caudal spinal cord and assess their specific functions in awake behaving animals, we find that V1 and V2b INs function in an opposing manner to control flexor–extensor-driven movements. Ablation of V1 INs results in limb hyperflexion, suggesting that V1 IN-derived inhibition is needed for proper extension movements of the limb. The loss of V2b INs results in hindlimb hyperextension and a delay in the transition from stance phase to swing phase, demonstrating V2b INs are required for the timely initiation and execution of limb flexion movements. Our findings also reveal a bias in the innervation of flexor- and extensor-related motor neurons by V1 and V2b INs that likely contributes to their differential actions on flexion–extension movements. DOI: http://dx.doi.org/10.7554/eLife.04718.001
format Online
Article
Text
id pubmed-4604447
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-46044472015-10-15 A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements Britz, Olivier Zhang, Jingming Grossmann, Katja S Dyck, Jason Kim, Jun C Dymecki, Susan Gosgnach, Simon Goulding, Martyn eLife Neuroscience V1 and V2b interneurons (INs) are essential for the production of an alternating flexor–extensor motor output. Using a tripartite genetic system to selectively ablate either V1 or V2b INs in the caudal spinal cord and assess their specific functions in awake behaving animals, we find that V1 and V2b INs function in an opposing manner to control flexor–extensor-driven movements. Ablation of V1 INs results in limb hyperflexion, suggesting that V1 IN-derived inhibition is needed for proper extension movements of the limb. The loss of V2b INs results in hindlimb hyperextension and a delay in the transition from stance phase to swing phase, demonstrating V2b INs are required for the timely initiation and execution of limb flexion movements. Our findings also reveal a bias in the innervation of flexor- and extensor-related motor neurons by V1 and V2b INs that likely contributes to their differential actions on flexion–extension movements. DOI: http://dx.doi.org/10.7554/eLife.04718.001 eLife Sciences Publications, Ltd 2015-10-14 /pmc/articles/PMC4604447/ /pubmed/26465208 http://dx.doi.org/10.7554/eLife.04718 Text en © 2015, Britz et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Neuroscience
Britz, Olivier
Zhang, Jingming
Grossmann, Katja S
Dyck, Jason
Kim, Jun C
Dymecki, Susan
Gosgnach, Simon
Goulding, Martyn
A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements
title A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements
title_full A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements
title_fullStr A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements
title_full_unstemmed A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements
title_short A genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements
title_sort genetically defined asymmetry underlies the inhibitory control of flexor–extensor locomotor movements
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4604447/
https://www.ncbi.nlm.nih.gov/pubmed/26465208
http://dx.doi.org/10.7554/eLife.04718
work_keys_str_mv AT britzolivier ageneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements
AT zhangjingming ageneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements
AT grossmannkatjas ageneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements
AT dyckjason ageneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements
AT kimjunc ageneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements
AT dymeckisusan ageneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements
AT gosgnachsimon ageneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements
AT gouldingmartyn ageneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements
AT britzolivier geneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements
AT zhangjingming geneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements
AT grossmannkatjas geneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements
AT dyckjason geneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements
AT kimjunc geneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements
AT dymeckisusan geneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements
AT gosgnachsimon geneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements
AT gouldingmartyn geneticallydefinedasymmetryunderliestheinhibitorycontrolofflexorextensorlocomotormovements