Cargando…

A combined experimental-numerical approach for determining mechanical properties of aluminum subjects to nanoindentation

A crystal plasticity finite element method (CPFEM) model has been developed to investigate the mechanical properties and micro-texture evolution of single-crystal aluminum induced by a sharp Berkovich indenter. The load-displacement curves, pile-up patterns and lattice rotation angles from simulatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Mao, Lu, Cheng, Tieu, Kiet Anh, Peng, Ching-Tun, Kong, Charlie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4604481/
https://www.ncbi.nlm.nih.gov/pubmed/26464128
http://dx.doi.org/10.1038/srep15072
_version_ 1782395061448736768
author Liu, Mao
Lu, Cheng
Tieu, Kiet Anh
Peng, Ching-Tun
Kong, Charlie
author_facet Liu, Mao
Lu, Cheng
Tieu, Kiet Anh
Peng, Ching-Tun
Kong, Charlie
author_sort Liu, Mao
collection PubMed
description A crystal plasticity finite element method (CPFEM) model has been developed to investigate the mechanical properties and micro-texture evolution of single-crystal aluminum induced by a sharp Berkovich indenter. The load-displacement curves, pile-up patterns and lattice rotation angles from simulation are consistent with the experimental results. The pile-up phenomenon and lattice rotation have been discussed based on the theory of crystal plasticity. In addition, a polycrystal tensile CPFEM model has been established to explore the relationship between indentation hardness and yield stress. The elastic constraint factor C is slightly larger than conventional value 3 due to the strain hardening.
format Online
Article
Text
id pubmed-4604481
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-46044812015-12-07 A combined experimental-numerical approach for determining mechanical properties of aluminum subjects to nanoindentation Liu, Mao Lu, Cheng Tieu, Kiet Anh Peng, Ching-Tun Kong, Charlie Sci Rep Article A crystal plasticity finite element method (CPFEM) model has been developed to investigate the mechanical properties and micro-texture evolution of single-crystal aluminum induced by a sharp Berkovich indenter. The load-displacement curves, pile-up patterns and lattice rotation angles from simulation are consistent with the experimental results. The pile-up phenomenon and lattice rotation have been discussed based on the theory of crystal plasticity. In addition, a polycrystal tensile CPFEM model has been established to explore the relationship between indentation hardness and yield stress. The elastic constraint factor C is slightly larger than conventional value 3 due to the strain hardening. Nature Publishing Group 2015-10-14 /pmc/articles/PMC4604481/ /pubmed/26464128 http://dx.doi.org/10.1038/srep15072 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Liu, Mao
Lu, Cheng
Tieu, Kiet Anh
Peng, Ching-Tun
Kong, Charlie
A combined experimental-numerical approach for determining mechanical properties of aluminum subjects to nanoindentation
title A combined experimental-numerical approach for determining mechanical properties of aluminum subjects to nanoindentation
title_full A combined experimental-numerical approach for determining mechanical properties of aluminum subjects to nanoindentation
title_fullStr A combined experimental-numerical approach for determining mechanical properties of aluminum subjects to nanoindentation
title_full_unstemmed A combined experimental-numerical approach for determining mechanical properties of aluminum subjects to nanoindentation
title_short A combined experimental-numerical approach for determining mechanical properties of aluminum subjects to nanoindentation
title_sort combined experimental-numerical approach for determining mechanical properties of aluminum subjects to nanoindentation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4604481/
https://www.ncbi.nlm.nih.gov/pubmed/26464128
http://dx.doi.org/10.1038/srep15072
work_keys_str_mv AT liumao acombinedexperimentalnumericalapproachfordeterminingmechanicalpropertiesofaluminumsubjectstonanoindentation
AT lucheng acombinedexperimentalnumericalapproachfordeterminingmechanicalpropertiesofaluminumsubjectstonanoindentation
AT tieukietanh acombinedexperimentalnumericalapproachfordeterminingmechanicalpropertiesofaluminumsubjectstonanoindentation
AT pengchingtun acombinedexperimentalnumericalapproachfordeterminingmechanicalpropertiesofaluminumsubjectstonanoindentation
AT kongcharlie acombinedexperimentalnumericalapproachfordeterminingmechanicalpropertiesofaluminumsubjectstonanoindentation
AT liumao combinedexperimentalnumericalapproachfordeterminingmechanicalpropertiesofaluminumsubjectstonanoindentation
AT lucheng combinedexperimentalnumericalapproachfordeterminingmechanicalpropertiesofaluminumsubjectstonanoindentation
AT tieukietanh combinedexperimentalnumericalapproachfordeterminingmechanicalpropertiesofaluminumsubjectstonanoindentation
AT pengchingtun combinedexperimentalnumericalapproachfordeterminingmechanicalpropertiesofaluminumsubjectstonanoindentation
AT kongcharlie combinedexperimentalnumericalapproachfordeterminingmechanicalpropertiesofaluminumsubjectstonanoindentation