Cargando…
Evaluation of a weighting approach for performing sensitivity analysis after multiple imputation
BACKGROUND: Multiple imputation (MI) is a well-recognised statistical technique for handling missing data. As usually implemented in standard statistical software, MI assumes that data are ‘Missing at random’ (MAR); an assumption that in many settings is implausible. It is not possible to distinguis...
Autores principales: | Hayati Rezvan, Panteha, White, Ian R., Lee, Katherine J., Carlin, John B., Simpson, Julie A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4604630/ https://www.ncbi.nlm.nih.gov/pubmed/26464305 http://dx.doi.org/10.1186/s12874-015-0074-2 |
Ejemplares similares
-
The rise of multiple imputation: a review of the reporting and implementation of the method in medical research
por: Hayati Rezvan, Panteha, et al.
Publicado: (2015) -
Evaluation of approaches for multiple imputation of three-level data
por: Wijesuriya, Rushani, et al.
Publicado: (2020) -
Combining Multiple Imputation and Inverse-Probability
Weighting
por: Seaman, Shaun R, et al.
Publicado: (2012) -
A comparison of multiple imputation methods for missing data in longitudinal studies
por: Huque, Md Hamidul, et al.
Publicado: (2018) -
Outcome-sensitive multiple imputation: a simulation study
por: Kontopantelis, Evangelos, et al.
Publicado: (2017)