Cargando…
Study on Interaction of Cationic Porphyrazine with Synthetic Polynucleotides
Interactions of cationic tetrakis (N, N′, N″, N‴- tetramethyltetra-3, 4-pyridinoporphyrazinatozinc (II) (Zn (tmtppa)) with synthetic polynucleotides, poly (G-C) and poly (A-T), and calf thymus DNA have been characterized in 7.5 mM phosphate buffer of pH 7.2 by UV-Vis absorption and fluorescence spec...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605475/ https://www.ncbi.nlm.nih.gov/pubmed/24473094 http://dx.doi.org/10.3233/ACP-140086 |
_version_ | 1782395206218285056 |
---|---|
author | Dezhampanah, Hamid Fyzolahjani, Soghra |
author_facet | Dezhampanah, Hamid Fyzolahjani, Soghra |
author_sort | Dezhampanah, Hamid |
collection | PubMed |
description | Interactions of cationic tetrakis (N, N′, N″, N‴- tetramethyltetra-3, 4-pyridinoporphyrazinatozinc (II) (Zn (tmtppa)) with synthetic polynucleotides, poly (G-C) and poly (A-T), and calf thymus DNA have been characterized in 7.5 mM phosphate buffer of pH 7.2 by UV-Vis absorption and fluorescence spectroscopy. The appearance of hypochromicity more than 30% in UV-Vis spectra of porphyrazine due to interaction of both poly (G-C) and poly (A-T) indicates interaction similar to that of porphyrazine with DNA. The binding constants were determined from the changes in the Q-band maximum of the porphyrazine spectra at various poly (G-C) and DNA concentrations. The values of K were 2.5 × 10 M, 2.5 × 10 M and 2.5 × 10 M for poly (G-C), poly (A-T) and DNA, respectively, at 25°C. The thermodynamic parameters (ΔG°, ΔH°, ΔS°) were calculated using the van't Hoff equation at various temperatures. The enthalpy and entropy changes were determined to be 41.14 kJ mol and 260.50 J mol·K for poly (G-C) and 53.59 kJ mol and 285.46 J mol·K for DNA at 25°C. The positive and large values of the entropy and enthalpy suggest that both hydrophobic and electrostatic interactions may play an important role in the stabilization of the complex formation. The binding of polynucleotides to porphyrazine quenches fluorescence emission of ethidium bromide (EB), and the quenching process obeys linear Stern-Volmer relationship. The results reviled groove-binding mode of porphyrazine for both AT- and GC-rich polynucleotides of DNA. |
format | Online Article Text |
id | pubmed-4605475 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | IOS Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-46054752015-12-13 Study on Interaction of Cationic Porphyrazine with Synthetic Polynucleotides Dezhampanah, Hamid Fyzolahjani, Soghra Anal Cell Pathol (Amst) Other Interactions of cationic tetrakis (N, N′, N″, N‴- tetramethyltetra-3, 4-pyridinoporphyrazinatozinc (II) (Zn (tmtppa)) with synthetic polynucleotides, poly (G-C) and poly (A-T), and calf thymus DNA have been characterized in 7.5 mM phosphate buffer of pH 7.2 by UV-Vis absorption and fluorescence spectroscopy. The appearance of hypochromicity more than 30% in UV-Vis spectra of porphyrazine due to interaction of both poly (G-C) and poly (A-T) indicates interaction similar to that of porphyrazine with DNA. The binding constants were determined from the changes in the Q-band maximum of the porphyrazine spectra at various poly (G-C) and DNA concentrations. The values of K were 2.5 × 10 M, 2.5 × 10 M and 2.5 × 10 M for poly (G-C), poly (A-T) and DNA, respectively, at 25°C. The thermodynamic parameters (ΔG°, ΔH°, ΔS°) were calculated using the van't Hoff equation at various temperatures. The enthalpy and entropy changes were determined to be 41.14 kJ mol and 260.50 J mol·K for poly (G-C) and 53.59 kJ mol and 285.46 J mol·K for DNA at 25°C. The positive and large values of the entropy and enthalpy suggest that both hydrophobic and electrostatic interactions may play an important role in the stabilization of the complex formation. The binding of polynucleotides to porphyrazine quenches fluorescence emission of ethidium bromide (EB), and the quenching process obeys linear Stern-Volmer relationship. The results reviled groove-binding mode of porphyrazine for both AT- and GC-rich polynucleotides of DNA. IOS Press 2013 2014-01-28 /pmc/articles/PMC4605475/ /pubmed/24473094 http://dx.doi.org/10.3233/ACP-140086 Text en Copyright © 2013 Hindawi Publishing Corporation and the authors. |
spellingShingle | Other Dezhampanah, Hamid Fyzolahjani, Soghra Study on Interaction of Cationic Porphyrazine with Synthetic Polynucleotides |
title | Study on Interaction of Cationic Porphyrazine with Synthetic Polynucleotides |
title_full | Study on Interaction of Cationic Porphyrazine with Synthetic Polynucleotides |
title_fullStr | Study on Interaction of Cationic Porphyrazine with Synthetic Polynucleotides |
title_full_unstemmed | Study on Interaction of Cationic Porphyrazine with Synthetic Polynucleotides |
title_short | Study on Interaction of Cationic Porphyrazine with Synthetic Polynucleotides |
title_sort | study on interaction of cationic porphyrazine with synthetic polynucleotides |
topic | Other |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605475/ https://www.ncbi.nlm.nih.gov/pubmed/24473094 http://dx.doi.org/10.3233/ACP-140086 |
work_keys_str_mv | AT dezhampanahhamid studyoninteractionofcationicporphyrazinewithsyntheticpolynucleotides AT fyzolahjanisoghra studyoninteractionofcationicporphyrazinewithsyntheticpolynucleotides |