Cargando…
Optimization of Complex Cancer Morphology Detection Using the SIVQ Pattern Recognition Algorithm
For personalization of medicine, increasingly clinical and demographic data are integrated into nomograms for prognostic use, while molecular biomarkers are being developed to add independent diagnostic, prognostic, or management information. In a number of cases in surgical pathology, morphometric...
Autores principales: | Hipp, Jason, Smith, Steven Christopher, Cheng, Jerome, Tomlins, Scott Arthur, Monaco, James, Madabhushi, Anant, Kunju, Lakshmi Priya, Balis, Ulysses J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605573/ https://www.ncbi.nlm.nih.gov/pubmed/21988838 http://dx.doi.org/10.3233/ACP-2011-0040 |
Ejemplares similares
-
Poster Session
por: Hipp, Jason, et al.
Publicado: (2011) -
Automated Area Calculation of Histopathologic Features Using SIVQ
por: Hipp, Jason, et al.
Publicado: (2011) -
Automated vector selection of SIVQ and parallel computing integration MATLAB™: Innovations supporting large-scale and high-throughput image analysis studies
por: Cheng, Jerome, et al.
Publicado: (2011) -
SIVQ-aided laser capture microdissection: A tool for high-throughput expression profiling
por: Hipp, Jason, et al.
Publicado: (2011) -
Integration of Architectural and Cytologic Driven Image Algorithms for Prostate Adenocarcinoma Identification
por: Hipp, Jason, et al.
Publicado: (2012)