Cargando…
Integration of Architectural and Cytologic Driven Image Algorithms for Prostate Adenocarcinoma Identification
Introduction: The advent of digital slides offers new opportunities within the practice of pathology such as the use of image analysis techniques to facilitate computer aided diagnosis (CAD) solutions. Use of CAD holds promise to enable new levels of decision support and allow for additional layers...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605585/ https://www.ncbi.nlm.nih.gov/pubmed/22425661 http://dx.doi.org/10.3233/ACP-2012-0054 |
_version_ | 1782395222618013696 |
---|---|
author | Hipp, Jason Monaco, James Kunju, L. Priya Cheng, Jerome Yagi, Yukako Rodriguez-Canales, Jaime Emmert-Buck, Michael R. Hewitt, Stephen Feldman, Michael D. Tomaszewski, John E. Toner, Mehmet Tompkins, Ronald G. Flotte, Thomas Lucas, David Gilbertson, John R. Madabhushi, Anant Balis, Ulysses |
author_facet | Hipp, Jason Monaco, James Kunju, L. Priya Cheng, Jerome Yagi, Yukako Rodriguez-Canales, Jaime Emmert-Buck, Michael R. Hewitt, Stephen Feldman, Michael D. Tomaszewski, John E. Toner, Mehmet Tompkins, Ronald G. Flotte, Thomas Lucas, David Gilbertson, John R. Madabhushi, Anant Balis, Ulysses |
author_sort | Hipp, Jason |
collection | PubMed |
description | Introduction: The advent of digital slides offers new opportunities within the practice of pathology such as the use of image analysis techniques to facilitate computer aided diagnosis (CAD) solutions. Use of CAD holds promise to enable new levels of decision support and allow for additional layers of quality assurance and consistency in rendered diagnoses. However, the development and testing of prostate cancer CAD solutions requires a ground truth map of the cancer to enable the generation of receiver operator characteristic (ROC) curves. This requires a pathologist to annotate, or paint, each of the malignant glands in prostate cancer with an image editor software - a time consuming and exhaustive process. Recently, two CAD algorithms have been described: probabilistic pairwise Markov models (PPMM) and spatially-invariant vector quantization (SIVQ). Briefly, SIVQ operates as a highly sensitive and specific pattern matching algorithm, making it optimal for the identification of any epithelial morphology, whereas PPMM operates as a highly sensitive detector of malignant perturbations in glandular lumenal architecture. Methods: By recapitulating algorithmically how a pathologist reviews prostate tissue sections, we created an algorithmic cascade of PPMM and SIVQ algorithms as previously described by Doyle el al. [1] where PPMM identifies the glands with abnormal lumenal architecture, and this area is then screened by SIVQ to identify the epithelium. Results: The performance of this algorithm cascade was assessed qualitatively (with the use of heatmaps) and quantitatively (with the use of ROC curves) and demonstrates greater performance in the identification of malignant prostatic epithelium. Conclusion: This ability to semi-autonomously paint nearly all the malignant epithelium of prostate cancer has immediate applications to future prostate cancer CAD development as a validated ground truth generator. In addition, such an approach has potential applications as a pre-screening/quality assurance tool. |
format | Online Article Text |
id | pubmed-4605585 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | IOS Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-46055852015-12-13 Integration of Architectural and Cytologic Driven Image Algorithms for Prostate Adenocarcinoma Identification Hipp, Jason Monaco, James Kunju, L. Priya Cheng, Jerome Yagi, Yukako Rodriguez-Canales, Jaime Emmert-Buck, Michael R. Hewitt, Stephen Feldman, Michael D. Tomaszewski, John E. Toner, Mehmet Tompkins, Ronald G. Flotte, Thomas Lucas, David Gilbertson, John R. Madabhushi, Anant Balis, Ulysses Anal Cell Pathol (Amst) Other Introduction: The advent of digital slides offers new opportunities within the practice of pathology such as the use of image analysis techniques to facilitate computer aided diagnosis (CAD) solutions. Use of CAD holds promise to enable new levels of decision support and allow for additional layers of quality assurance and consistency in rendered diagnoses. However, the development and testing of prostate cancer CAD solutions requires a ground truth map of the cancer to enable the generation of receiver operator characteristic (ROC) curves. This requires a pathologist to annotate, or paint, each of the malignant glands in prostate cancer with an image editor software - a time consuming and exhaustive process. Recently, two CAD algorithms have been described: probabilistic pairwise Markov models (PPMM) and spatially-invariant vector quantization (SIVQ). Briefly, SIVQ operates as a highly sensitive and specific pattern matching algorithm, making it optimal for the identification of any epithelial morphology, whereas PPMM operates as a highly sensitive detector of malignant perturbations in glandular lumenal architecture. Methods: By recapitulating algorithmically how a pathologist reviews prostate tissue sections, we created an algorithmic cascade of PPMM and SIVQ algorithms as previously described by Doyle el al. [1] where PPMM identifies the glands with abnormal lumenal architecture, and this area is then screened by SIVQ to identify the epithelium. Results: The performance of this algorithm cascade was assessed qualitatively (with the use of heatmaps) and quantitatively (with the use of ROC curves) and demonstrates greater performance in the identification of malignant prostatic epithelium. Conclusion: This ability to semi-autonomously paint nearly all the malignant epithelium of prostate cancer has immediate applications to future prostate cancer CAD development as a validated ground truth generator. In addition, such an approach has potential applications as a pre-screening/quality assurance tool. IOS Press 2012 2012-03-16 /pmc/articles/PMC4605585/ /pubmed/22425661 http://dx.doi.org/10.3233/ACP-2012-0054 Text en Copyright © 2012 Hindawi Publishing Corporation and the authors. |
spellingShingle | Other Hipp, Jason Monaco, James Kunju, L. Priya Cheng, Jerome Yagi, Yukako Rodriguez-Canales, Jaime Emmert-Buck, Michael R. Hewitt, Stephen Feldman, Michael D. Tomaszewski, John E. Toner, Mehmet Tompkins, Ronald G. Flotte, Thomas Lucas, David Gilbertson, John R. Madabhushi, Anant Balis, Ulysses Integration of Architectural and Cytologic Driven Image Algorithms for Prostate Adenocarcinoma Identification |
title | Integration of Architectural and Cytologic Driven Image Algorithms for Prostate Adenocarcinoma Identification |
title_full | Integration of Architectural and Cytologic Driven Image Algorithms for Prostate Adenocarcinoma Identification |
title_fullStr | Integration of Architectural and Cytologic Driven Image Algorithms for Prostate Adenocarcinoma Identification |
title_full_unstemmed | Integration of Architectural and Cytologic Driven Image Algorithms for Prostate Adenocarcinoma Identification |
title_short | Integration of Architectural and Cytologic Driven Image Algorithms for Prostate Adenocarcinoma Identification |
title_sort | integration of architectural and cytologic driven image algorithms for prostate adenocarcinoma identification |
topic | Other |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605585/ https://www.ncbi.nlm.nih.gov/pubmed/22425661 http://dx.doi.org/10.3233/ACP-2012-0054 |
work_keys_str_mv | AT hippjason integrationofarchitecturalandcytologicdrivenimagealgorithmsforprostateadenocarcinomaidentification AT monacojames integrationofarchitecturalandcytologicdrivenimagealgorithmsforprostateadenocarcinomaidentification AT kunjulpriya integrationofarchitecturalandcytologicdrivenimagealgorithmsforprostateadenocarcinomaidentification AT chengjerome integrationofarchitecturalandcytologicdrivenimagealgorithmsforprostateadenocarcinomaidentification AT yagiyukako integrationofarchitecturalandcytologicdrivenimagealgorithmsforprostateadenocarcinomaidentification AT rodriguezcanalesjaime integrationofarchitecturalandcytologicdrivenimagealgorithmsforprostateadenocarcinomaidentification AT emmertbuckmichaelr integrationofarchitecturalandcytologicdrivenimagealgorithmsforprostateadenocarcinomaidentification AT hewittstephen integrationofarchitecturalandcytologicdrivenimagealgorithmsforprostateadenocarcinomaidentification AT feldmanmichaeld integrationofarchitecturalandcytologicdrivenimagealgorithmsforprostateadenocarcinomaidentification AT tomaszewskijohne integrationofarchitecturalandcytologicdrivenimagealgorithmsforprostateadenocarcinomaidentification AT tonermehmet integrationofarchitecturalandcytologicdrivenimagealgorithmsforprostateadenocarcinomaidentification AT tompkinsronaldg integrationofarchitecturalandcytologicdrivenimagealgorithmsforprostateadenocarcinomaidentification AT flottethomas integrationofarchitecturalandcytologicdrivenimagealgorithmsforprostateadenocarcinomaidentification AT lucasdavid integrationofarchitecturalandcytologicdrivenimagealgorithmsforprostateadenocarcinomaidentification AT gilbertsonjohnr integrationofarchitecturalandcytologicdrivenimagealgorithmsforprostateadenocarcinomaidentification AT madabhushianant integrationofarchitecturalandcytologicdrivenimagealgorithmsforprostateadenocarcinomaidentification AT balisulysses integrationofarchitecturalandcytologicdrivenimagealgorithmsforprostateadenocarcinomaidentification |