Cargando…
The Prognostic Value of Adaptive Nuclear Texture Features from Patient Gray Level Entropy Matrices in Early Stage Ovarian Cancer
Background: Nuclear texture analysis gives information about the spatial arrangement of the pixel gray levels in a digitized microscopic nuclear image, providing texture features that may be used as quantitative tools for prognosis of human cancer. The aim of the study was to evaluate the prognostic...
Autores principales: | Nielsen, Birgitte, Albregtsen, Fritz, Kildal, Wanja, Abeler, Vera M., Kristensen, Gunnar B., Danielsen, Håvard E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605591/ https://www.ncbi.nlm.nih.gov/pubmed/22596183 http://dx.doi.org/10.3233/ACP-2012-0065 |
Ejemplares similares
-
Entropy-Based Adaptive Nuclear Texture Features are Independent Prognostic Markers in a Total Population of Uterine Sarcomas
por: Nielsen, Birgitte, et al.
Publicado: (2015) -
Prognostic Classification of Early Ovarian Cancer Based on very Low Dimensionality Adaptive Texture Feature Vectors from Cell Nuclei from Monolayers and Histological Sections
por: Nielsen, Birgitte, et al.
Publicado: (2001) -
Prognostic Value of Adaptive Textural Features–The Effect of Standardizing Nuclear First-Order Gray Level Statistics and Mixing Information from Nuclei Having Different Area
por: Nielsen, Birgitte, et al.
Publicado: (2006) -
The Use of Fractal Features from the Periphery of Cell Nuclei as a Classification Tool
por: Nielsen, Birgitte, et al.
Publicado: (1999) -
A Review of Caveats in Statistical Nuclear Image Analysis
por: Schulerud, Helene, et al.
Publicado: (1998)