Cargando…

Distilling Big Data: Refining Quality Information in the Era of Yottabytes

Big Data is the buzzword of the modern century. With the invasion of pervasive computing, we live in a data centric environment, where we always leave a track of data related to our day to day activities. Be it a visit to a shopping mall or hospital or surfing Internet, we create voluminous data rel...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramachandramurthy, Sivaraman, Subramaniam, Srinivasan, Ramasamy, Chandrasekeran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4606078/
https://www.ncbi.nlm.nih.gov/pubmed/26495424
http://dx.doi.org/10.1155/2015/453597
Descripción
Sumario:Big Data is the buzzword of the modern century. With the invasion of pervasive computing, we live in a data centric environment, where we always leave a track of data related to our day to day activities. Be it a visit to a shopping mall or hospital or surfing Internet, we create voluminous data related to credit card transactions, user details, location information, and so on. These trails of data simply define an individual and form the backbone for user-profiling. With the mobile phones and their easy access to online social networks on the go, sensor data such as geo-taggings and events and sentiments around them contribute to the already overwhelming data containers. With reductions in the cost of storage and computational devices and with increasing proliferation of Cloud, we never felt any constraints in storing or processing such data. Eventually we end up having several exabytes of data and analysing them for their usefulness has introduced new frontiers of research. Effective distillation of these data is the need of the hour to improve the veracity of the Big Data. This research targets the utilization of the Fuzzy Bayesian process model to improve the quality of information in Big Data.