Cargando…
Complexity and Controversies over the Cytokine Profiles of T Helper Cell Subpopulations in Tuberculosis
Tuberculosis (TB) is a contagious infectious disease caused by the TB-causing bacillus Mycobacterium tuberculosis and is considered a public health problem with enormous social impact. Disease progression is determined mainly by the balance between the microorganism and the host defense systems. Alt...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4606092/ https://www.ncbi.nlm.nih.gov/pubmed/26495323 http://dx.doi.org/10.1155/2015/639107 |
Sumario: | Tuberculosis (TB) is a contagious infectious disease caused by the TB-causing bacillus Mycobacterium tuberculosis and is considered a public health problem with enormous social impact. Disease progression is determined mainly by the balance between the microorganism and the host defense systems. Although the immune system controls the infection, this control does not necessarily lead to sterilization. Over recent decades, the patterns of CD4+ T cell responses have been studied with a goal of complete understanding of the immunological mechanisms involved in the maintenance of latent or active tuberculosis infection and of the clinical cure after treatment. Conflicting results have been suggested over the years, particularly in studies comparing experimental models and human disease. In recent years, in addition to Th1, Th2, and Th17 profiles, new standards of cellular immune responses, such as Th9, Th22, and IFN-γ-IL-10 double-producing Th cells, discussed here, have also been described. Additionally, many new roles and cellular sources have been described for IL-10, demonstrating a critical role for this cytokine as regulatory, rather than merely pathogenic cytokine, involved in the establishment of chronic latent infection, in the clinical cure after treatment and in keeping antibacillary effector mechanisms active to prevent immune-mediated damage. |
---|