Cargando…
Development of Self-Compressing BLSOM for Comprehensive Analysis of Big Sequence Data
With the remarkable increase in genomic sequence data from various organisms, novel tools are needed for comprehensive analyses of available big sequence data. We previously developed a Batch-Learning Self-Organizing Map (BLSOM), which can cluster genomic fragment sequences according to phylotype so...
Autores principales: | Kikuchi, Akihito, Ikemura, Toshimichi, Abe, Takashi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4606171/ https://www.ncbi.nlm.nih.gov/pubmed/26495297 http://dx.doi.org/10.1155/2015/506052 |
Ejemplares similares
-
A Novel Bioinformatics Strategy to Analyze Microbial Big Sequence Data for Efficient Knowledge Discovery: Batch-Learning Self-Organizing Map (BLSOM)
por: Iwasaki, Yuki, et al.
Publicado: (2013) -
A Novel Bioinformatics Method for Efficient Knowledge Discovery by BLSOM from Big Genomic Sequence Data
por: Bai, Yu, et al.
Publicado: (2014) -
tRNADB-CE: tRNA gene database well-timed in the era of big sequence data
por: Abe, Takashi, et al.
Publicado: (2014) -
Horizontally Transferred Genetic Elements in the Tsetse Fly Genome: An Alignment-Free Clustering Approach Using Batch Learning Self-Organising Map (BLSOM)
por: Nakao, Ryo, et al.
Publicado: (2016) -
Visualization of Genome Signatures of Eukaryote Genomes by Batch-Learning Self-Organizing Map with a Special Emphasis on Drosophila Genomes
por: Abe, Takashi, et al.
Publicado: (2014)