Cargando…
Improvement of glucaric acid production in E. coli via dynamic control of metabolic fluxes
D-glucaric acid can be used as a building block for biopolymers as well as in the formulation of detergents and corrosion inhibitors. A biosynthetic route for production in Escherichia coli has been developed (Moon et al., 2009), but previous work with the glucaric acid pathway has indicated that co...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4606470/ https://www.ncbi.nlm.nih.gov/pubmed/26478859 http://dx.doi.org/10.1016/j.meteno.2015.09.002 |
_version_ | 1782395356644900864 |
---|---|
author | Reizman, Irene M. Brockman Stenger, Andrew R. Reisch, Chris R. Gupta, Apoorv Connors, Neal C. Prather, Kristala L.J. |
author_facet | Reizman, Irene M. Brockman Stenger, Andrew R. Reisch, Chris R. Gupta, Apoorv Connors, Neal C. Prather, Kristala L.J. |
author_sort | Reizman, Irene M. Brockman |
collection | PubMed |
description | D-glucaric acid can be used as a building block for biopolymers as well as in the formulation of detergents and corrosion inhibitors. A biosynthetic route for production in Escherichia coli has been developed (Moon et al., 2009), but previous work with the glucaric acid pathway has indicated that competition with endogenous metabolism may limit carbon flux into the pathway. Our group has recently developed an E. coli strain where phosphofructokinase (Pfk) activity can be dynamically controlled and demonstrated its use for improving yields and titers of the glucaric acid precursor myo-inositol on glucose minimal medium. In this work, we have explored the further applicability of this strain for glucaric acid production in a supplemented medium more relevant for scale-up studies, both under batch conditions and with glucose feeding via in situ enzymatic starch hydrolysis. It was found that glucaric acid titers could be improved by up to 42% with appropriately timed knockdown of Pfk activity during glucose feeding. The glucose feeding protocol could also be used for reduction of acetate production in the wild type and modified E. coli strains. |
format | Online Article Text |
id | pubmed-4606470 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-46064702016-12-01 Improvement of glucaric acid production in E. coli via dynamic control of metabolic fluxes Reizman, Irene M. Brockman Stenger, Andrew R. Reisch, Chris R. Gupta, Apoorv Connors, Neal C. Prather, Kristala L.J. Metab Eng Commun Article D-glucaric acid can be used as a building block for biopolymers as well as in the formulation of detergents and corrosion inhibitors. A biosynthetic route for production in Escherichia coli has been developed (Moon et al., 2009), but previous work with the glucaric acid pathway has indicated that competition with endogenous metabolism may limit carbon flux into the pathway. Our group has recently developed an E. coli strain where phosphofructokinase (Pfk) activity can be dynamically controlled and demonstrated its use for improving yields and titers of the glucaric acid precursor myo-inositol on glucose minimal medium. In this work, we have explored the further applicability of this strain for glucaric acid production in a supplemented medium more relevant for scale-up studies, both under batch conditions and with glucose feeding via in situ enzymatic starch hydrolysis. It was found that glucaric acid titers could be improved by up to 42% with appropriately timed knockdown of Pfk activity during glucose feeding. The glucose feeding protocol could also be used for reduction of acetate production in the wild type and modified E. coli strains. Elsevier 2015-09-14 /pmc/articles/PMC4606470/ /pubmed/26478859 http://dx.doi.org/10.1016/j.meteno.2015.09.002 Text en © 2015 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Reizman, Irene M. Brockman Stenger, Andrew R. Reisch, Chris R. Gupta, Apoorv Connors, Neal C. Prather, Kristala L.J. Improvement of glucaric acid production in E. coli via dynamic control of metabolic fluxes |
title | Improvement of glucaric acid production in E. coli via dynamic control of metabolic fluxes |
title_full | Improvement of glucaric acid production in E. coli via dynamic control of metabolic fluxes |
title_fullStr | Improvement of glucaric acid production in E. coli via dynamic control of metabolic fluxes |
title_full_unstemmed | Improvement of glucaric acid production in E. coli via dynamic control of metabolic fluxes |
title_short | Improvement of glucaric acid production in E. coli via dynamic control of metabolic fluxes |
title_sort | improvement of glucaric acid production in e. coli via dynamic control of metabolic fluxes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4606470/ https://www.ncbi.nlm.nih.gov/pubmed/26478859 http://dx.doi.org/10.1016/j.meteno.2015.09.002 |
work_keys_str_mv | AT reizmanirenembrockman improvementofglucaricacidproductioninecoliviadynamiccontrolofmetabolicfluxes AT stengerandrewr improvementofglucaricacidproductioninecoliviadynamiccontrolofmetabolicfluxes AT reischchrisr improvementofglucaricacidproductioninecoliviadynamiccontrolofmetabolicfluxes AT guptaapoorv improvementofglucaricacidproductioninecoliviadynamiccontrolofmetabolicfluxes AT connorsnealc improvementofglucaricacidproductioninecoliviadynamiccontrolofmetabolicfluxes AT pratherkristalalj improvementofglucaricacidproductioninecoliviadynamiccontrolofmetabolicfluxes |