Cargando…
Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease
The present work adopted a systems pharmacology-based approach to provide new insights into the active compounds and therapeutic targets of Bufei Yishen formula (BYF) for the treatment of chronic obstructive pulmonary disease (COPD). In addition, we established a rat model of cigarette smoke- and ba...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4606809/ https://www.ncbi.nlm.nih.gov/pubmed/26469778 http://dx.doi.org/10.1038/srep15290 |
_version_ | 1782395426920464384 |
---|---|
author | Li, Jiansheng Zhao, Peng Li, Ya Tian, Yange Wang, Yonghua |
author_facet | Li, Jiansheng Zhao, Peng Li, Ya Tian, Yange Wang, Yonghua |
author_sort | Li, Jiansheng |
collection | PubMed |
description | The present work adopted a systems pharmacology-based approach to provide new insights into the active compounds and therapeutic targets of Bufei Yishen formula (BYF) for the treatment of chronic obstructive pulmonary disease (COPD). In addition, we established a rat model of cigarette smoke- and bacterial infection-induced COPD to validate the mechanisms of BYF action that were predicted in systems pharmacology study. The systems pharmacology model derived 216 active compounds from BYF and 195 potential targets related to various diseases. The compound-target network showed that each herbal drug in the BYF formula acted on similar targets, suggesting potential synergistic effects among these herbal drugs. The ClueGo assay, a Cytoscape plugin, revealed that most targets were related to activation of MAP kinase and matrix metalloproteinases. By using target-diseases network analysis, we found that BYF had great potential to treatment of multiple diseases, such as respiratory tract diseases, immune system, and cardiovascular diseases. Furthermore, we found that BYF had the ability to prevent COPD and its comorbidities, such as ventricular hypertrophy, in vivo. Moreover, BYF inhibited the inflammatory cytokine, and hypertrophic factors expression, protease-antiprotease imbalance and the collagen deposition, which may be the underlying mechanisms of action of BYF. |
format | Online Article Text |
id | pubmed-4606809 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-46068092015-10-28 Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease Li, Jiansheng Zhao, Peng Li, Ya Tian, Yange Wang, Yonghua Sci Rep Article The present work adopted a systems pharmacology-based approach to provide new insights into the active compounds and therapeutic targets of Bufei Yishen formula (BYF) for the treatment of chronic obstructive pulmonary disease (COPD). In addition, we established a rat model of cigarette smoke- and bacterial infection-induced COPD to validate the mechanisms of BYF action that were predicted in systems pharmacology study. The systems pharmacology model derived 216 active compounds from BYF and 195 potential targets related to various diseases. The compound-target network showed that each herbal drug in the BYF formula acted on similar targets, suggesting potential synergistic effects among these herbal drugs. The ClueGo assay, a Cytoscape plugin, revealed that most targets were related to activation of MAP kinase and matrix metalloproteinases. By using target-diseases network analysis, we found that BYF had great potential to treatment of multiple diseases, such as respiratory tract diseases, immune system, and cardiovascular diseases. Furthermore, we found that BYF had the ability to prevent COPD and its comorbidities, such as ventricular hypertrophy, in vivo. Moreover, BYF inhibited the inflammatory cytokine, and hypertrophic factors expression, protease-antiprotease imbalance and the collagen deposition, which may be the underlying mechanisms of action of BYF. Nature Publishing Group 2015-10-15 /pmc/articles/PMC4606809/ /pubmed/26469778 http://dx.doi.org/10.1038/srep15290 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Li, Jiansheng Zhao, Peng Li, Ya Tian, Yange Wang, Yonghua Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease |
title | Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease |
title_full | Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease |
title_fullStr | Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease |
title_full_unstemmed | Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease |
title_short | Systems pharmacology-based dissection of mechanisms of Chinese medicinal formula Bufei Yishen as an effective treatment for chronic obstructive pulmonary disease |
title_sort | systems pharmacology-based dissection of mechanisms of chinese medicinal formula bufei yishen as an effective treatment for chronic obstructive pulmonary disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4606809/ https://www.ncbi.nlm.nih.gov/pubmed/26469778 http://dx.doi.org/10.1038/srep15290 |
work_keys_str_mv | AT lijiansheng systemspharmacologybaseddissectionofmechanismsofchinesemedicinalformulabufeiyishenasaneffectivetreatmentforchronicobstructivepulmonarydisease AT zhaopeng systemspharmacologybaseddissectionofmechanismsofchinesemedicinalformulabufeiyishenasaneffectivetreatmentforchronicobstructivepulmonarydisease AT liya systemspharmacologybaseddissectionofmechanismsofchinesemedicinalformulabufeiyishenasaneffectivetreatmentforchronicobstructivepulmonarydisease AT tianyange systemspharmacologybaseddissectionofmechanismsofchinesemedicinalformulabufeiyishenasaneffectivetreatmentforchronicobstructivepulmonarydisease AT wangyonghua systemspharmacologybaseddissectionofmechanismsofchinesemedicinalformulabufeiyishenasaneffectivetreatmentforchronicobstructivepulmonarydisease |