Cargando…
Predicting Soil Salinity with Vis–NIR Spectra after Removing the Effects of Soil Moisture Using External Parameter Orthogonalization
Robust models for predicting soil salinity that use visible and near-infrared (vis–NIR) reflectance spectroscopy are needed to better quantify soil salinity in agricultural fields. Currently available models are not sufficiently robust for variable soil moisture contents. Thus, we used external para...
Autores principales: | Liu, Ya, Pan, Xianzhang, Wang, Changkun, Li, Yanli, Shi, Rongjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4607364/ https://www.ncbi.nlm.nih.gov/pubmed/26468645 http://dx.doi.org/10.1371/journal.pone.0140688 |
Ejemplares similares
-
Combining ancillary soil data with VisNIR spectra to improve predictions of organic and inorganic carbon content of soils
por: Filippi, Patrick, et al.
Publicado: (2018) -
Predicting Profile Soil Properties with Reflectance Spectra via Bayesian Covariate-Assisted External Parameter Orthogonalization
por: S. Veum, Kristen, et al.
Publicado: (2018) -
Evaluation of Machine Learning Approaches to Predict Soil Organic Matter and pH Using vis-NIR Spectra
por: Yang, Meihua, et al.
Publicado: (2019) -
In Situ VIS-NIR Spectroscopy for a Basic and Rapid Soil Investigation
por: Debaene, Guillaume, et al.
Publicado: (2023) -
Experimental Investigation of Ground Radiation on Dielectric and Brightness Temperature of Soil Moisture and Soil Salinity
por: Wang, Weizhen, et al.
Publicado: (2020)