Cargando…

Acute Modulation of Brain Connectivity in Parkinson Disease after Automatic Mechanical Peripheral Stimulation: A Pilot Study

OBJECTIVE: The present study shows the results of a double-blind sham-controlled pilot trial to test whether measurable stimulus-specific functional connectivity changes exist after Automatic Mechanical Peripheral Stimulation (AMPS) in patients with idiopathic Parkinson Disease. METHODS: Eleven pati...

Descripción completa

Detalles Bibliográficos
Autores principales: Quattrocchi, Carlo Cosimo, de Pandis, Maria Francesca, Piervincenzi, Claudia, Galli, Manuela, Melgari, Jean Marc, Salomone, Gaetano, Sale, Patrizio, Mallio, Carlo Augusto, Carducci, Filippo, Stocchi, Fabrizio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4607499/
https://www.ncbi.nlm.nih.gov/pubmed/26469868
http://dx.doi.org/10.1371/journal.pone.0137977
Descripción
Sumario:OBJECTIVE: The present study shows the results of a double-blind sham-controlled pilot trial to test whether measurable stimulus-specific functional connectivity changes exist after Automatic Mechanical Peripheral Stimulation (AMPS) in patients with idiopathic Parkinson Disease. METHODS: Eleven patients (6 women and 5 men) with idiopathic Parkinson Disease underwent brain fMRI immediately before and after sham or effective AMPS. Resting state Functional Connectivity (RSFC) was assessed using the seed-ROI based analysis. Seed ROIs were positioned on basal ganglia, on primary sensory-motor cortices, on the supplementary motor areas and on the cerebellum. Individual differences for pre- and post-effective AMPS and pre- and post-sham condition were obtained and first entered in respective one-sample t-test analyses, to evaluate the mean effect of condition. RESULTS: Effective AMPS, but not sham stimulation, induced increase of RSFC of the sensory motor cortex, nucleus striatum and cerebellum. Secondly, individual differences for both conditions were entered into paired group t-test analysis to rule out sub-threshold effects of sham stimulation, which showed stronger connectivity of the striatum nucleus with the right lateral occipital cortex and the cuneal cortex (max Z score 3.12) and with the right anterior temporal lobe (max Z score 3.42) and of the cerebellum with the right lateral occipital cortex and the right cerebellar cortex (max Z score 3.79). CONCLUSIONS: Our results suggest that effective AMPS acutely increases RSFC of brain regions involved in visuo-spatial and sensory-motor integration. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that automatic mechanical peripheral stimulation is effective in modulating brain functional connectivity of patients with Parkinson Disease at rest. TRIAL REGISTRATION: Clinical Trials.gov NCT01815281