Cargando…
Identification of functional networks in resting state fMRI data using adaptive sparse representation and affinity propagation clustering
Human brain functional system has been viewed as a complex network. To accurately characterize this brain network, it is important to estimate the functional connectivity between separate brain regions (i.e., association matrix). One common approach to evaluating the connectivity is the pairwise Pea...
Autores principales: | Li, Xuan, Wang, Haixian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4607787/ https://www.ncbi.nlm.nih.gov/pubmed/26528123 http://dx.doi.org/10.3389/fnins.2015.00383 |
Ejemplares similares
-
Phase fMRI Reveals More Sparseness and Balance of Rest Brain Functional Connectivity Than Magnitude fMRI
por: Chen, Zikuan, et al.
Publicado: (2019) -
Robust brain parcellation using sparse representation on resting-state fMRI
por: Zhang, Yu, et al.
Publicado: (2014) -
A Supervoxel-Based Method for Groupwise Whole Brain Parcellation with Resting-State fMRI Data
por: Wang, Jing, et al.
Publicado: (2016) -
Sparse Estimation of Resting-State Effective Connectivity From fMRI Cross-Spectra
por: Lennartz, Carolin, et al.
Publicado: (2018) -
A Sparse EEG-Informed fMRI Model for Hybrid EEG-fMRI Neurofeedback Prediction
por: Cury, Claire, et al.
Publicado: (2020)