Cargando…
The inconstancy of the transient climate response parameter under increasing CO(2)
In the Coupled Model Intercomparison Project Phase 5 (CMIP5), the model-mean increase in global mean surface air temperature T under the 1pctCO2 scenario (atmospheric CO(2) increasing at 1% yr(−1)) during the second doubling of CO(2) is 40% larger than the transient climate response (TCR), i.e. the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608037/ https://www.ncbi.nlm.nih.gov/pubmed/26438279 http://dx.doi.org/10.1098/rsta.2014.0417 |
_version_ | 1782395595630051328 |
---|---|
author | Gregory, J. M. Andrews, T. Good, P. |
author_facet | Gregory, J. M. Andrews, T. Good, P. |
author_sort | Gregory, J. M. |
collection | PubMed |
description | In the Coupled Model Intercomparison Project Phase 5 (CMIP5), the model-mean increase in global mean surface air temperature T under the 1pctCO2 scenario (atmospheric CO(2) increasing at 1% yr(−1)) during the second doubling of CO(2) is 40% larger than the transient climate response (TCR), i.e. the increase in T during the first doubling. We identify four possible contributory effects. First, the surface climate system loses heat less readily into the ocean beneath as the latter warms. The model spread in the thermal coupling between the upper and deep ocean largely explains the model spread in ocean heat uptake efficiency. Second, CO(2) radiative forcing may rise more rapidly than logarithmically with CO(2) concentration. Third, the climate feedback parameter may decline as the CO(2) concentration rises. With CMIP5 data, we cannot distinguish the second and third possibilities. Fourth, the climate feedback parameter declines as time passes or T rises; in 1pctCO2, this effect is less important than the others. We find that T projected for the end of the twenty-first century correlates more highly with T at the time of quadrupled CO(2) in 1pctCO2 than with the TCR, and we suggest that the TCR may be underestimated from observed climate change. |
format | Online Article Text |
id | pubmed-4608037 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | The Royal Society Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-46080372015-11-13 The inconstancy of the transient climate response parameter under increasing CO(2) Gregory, J. M. Andrews, T. Good, P. Philos Trans A Math Phys Eng Sci Articles In the Coupled Model Intercomparison Project Phase 5 (CMIP5), the model-mean increase in global mean surface air temperature T under the 1pctCO2 scenario (atmospheric CO(2) increasing at 1% yr(−1)) during the second doubling of CO(2) is 40% larger than the transient climate response (TCR), i.e. the increase in T during the first doubling. We identify four possible contributory effects. First, the surface climate system loses heat less readily into the ocean beneath as the latter warms. The model spread in the thermal coupling between the upper and deep ocean largely explains the model spread in ocean heat uptake efficiency. Second, CO(2) radiative forcing may rise more rapidly than logarithmically with CO(2) concentration. Third, the climate feedback parameter may decline as the CO(2) concentration rises. With CMIP5 data, we cannot distinguish the second and third possibilities. Fourth, the climate feedback parameter declines as time passes or T rises; in 1pctCO2, this effect is less important than the others. We find that T projected for the end of the twenty-first century correlates more highly with T at the time of quadrupled CO(2) in 1pctCO2 than with the TCR, and we suggest that the TCR may be underestimated from observed climate change. The Royal Society Publishing 2015-11-13 /pmc/articles/PMC4608037/ /pubmed/26438279 http://dx.doi.org/10.1098/rsta.2014.0417 Text en © 2015 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Articles Gregory, J. M. Andrews, T. Good, P. The inconstancy of the transient climate response parameter under increasing CO(2) |
title | The inconstancy of the transient climate response parameter under increasing CO(2) |
title_full | The inconstancy of the transient climate response parameter under increasing CO(2) |
title_fullStr | The inconstancy of the transient climate response parameter under increasing CO(2) |
title_full_unstemmed | The inconstancy of the transient climate response parameter under increasing CO(2) |
title_short | The inconstancy of the transient climate response parameter under increasing CO(2) |
title_sort | inconstancy of the transient climate response parameter under increasing co(2) |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608037/ https://www.ncbi.nlm.nih.gov/pubmed/26438279 http://dx.doi.org/10.1098/rsta.2014.0417 |
work_keys_str_mv | AT gregoryjm theinconstancyofthetransientclimateresponseparameterunderincreasingco2 AT andrewst theinconstancyofthetransientclimateresponseparameterunderincreasingco2 AT goodp theinconstancyofthetransientclimateresponseparameterunderincreasingco2 AT gregoryjm inconstancyofthetransientclimateresponseparameterunderincreasingco2 AT andrewst inconstancyofthetransientclimateresponseparameterunderincreasingco2 AT goodp inconstancyofthetransientclimateresponseparameterunderincreasingco2 |