Cargando…
How much of the difference in life expectancy between Scottish cities does deprivation explain?
BACKGROUND: Glasgow’s low life expectancy and high levels of deprivation are well documented. Studies comparing Glasgow to similarly deprived cities in England suggest an excess of deaths in Glasgow that cannot be accounted for by deprivation. Within Scotland comparisons are more equivocal suggestin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608116/ https://www.ncbi.nlm.nih.gov/pubmed/26474578 http://dx.doi.org/10.1186/s12889-015-2358-1 |
Sumario: | BACKGROUND: Glasgow’s low life expectancy and high levels of deprivation are well documented. Studies comparing Glasgow to similarly deprived cities in England suggest an excess of deaths in Glasgow that cannot be accounted for by deprivation. Within Scotland comparisons are more equivocal suggesting deprivation could explain Glasgow’s excess mortality. Few studies have used life expectancy, an intuitive measure that quantifies the between-city difference in years. This study aimed to use the most up-to-date data to compare Glasgow to other Scottish cities and to (i) evaluate whether deprivation could account for lower life expectancy in Glasgow and (ii) explore whether the age distribution of mortality in Glasgow could explain its lower life expectancy. METHODS: Sex specific life expectancy was calculated for 2007–2011 for the population in Glasgow and the combined population of Aberdeen, Dundee and Edinburgh. Life expectancy was calculated for deciles of income deprivation, based on the national ranking of datazones, using the Scottish Index of Multiple Deprivation. Life expectancy in Glasgow overall, and by deprivation decile, was compared to that in Aberdeen, Dundee and Edinburgh combined, and the life expectancy difference decomposed by age using Arriaga’s discrete method. RESULTS: Life expectancy for the whole Glasgow population was lower than the population of Aberdeen, Dundee and Edinburgh combined. When life expectancy was compared by national income deprivation decile, Glasgow’s life expectancy was not systematically lower, and deprivation accounted for over 90 % of the difference. This was reduced to 70 % of the difference when carrying out sensitivity analysis using city-specific income deprivation deciles. In both analyses life expectancy was not systematically lower in Glasgow when stratified by deprivation. Decomposing the differences in life expectancy also showed that the age distribution of mortality was not systematically different in Glasgow after accounting for deprivation. CONCLUSIONS: Life expectancy is not systematically lower across the Glasgow population compared to Aberdeen, Dundee and Edinburgh combined, once deprivation is accounted for. This provides further evidence that tackling deprivation in Glasgow would probably reduce the health inequalities that exist between Scottish cities. The change in the amount of unexplained difference when carrying out sensitivity analysis demonstrates the difficulties in comparing socioeconomic deprivation between populations, even within the same country and when applying an established ecological measure. Although the majority of health inequality between Glasgow and other Scottish cities is explained by deprivation, the difference in the amount of unexplained inequality depending on the relative context of deprivation used demonstrates the challenges associated with attributing mortality inequalities to an independent ‘place effect’. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12889-015-2358-1) contains supplementary material, which is available to authorized users. |
---|