Cargando…
Decomposing the heterogeneity of depression at the person-, symptom-, and time-level: latent variable models versus multimode principal component analysis
BACKGROUND: Heterogeneity of psychopathological concepts such as depression hampers progress in research and clinical practice. Latent Variable Models (LVMs) have been widely used to reduce this problem by identification of more homogeneous factors or subgroups. However, heterogeneity exists at mult...
Autores principales: | de Vos, Stijn, Wardenaar, Klaas J., Bos, Elisabeth H., Wit, Ernst C., de Jonge, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608190/ https://www.ncbi.nlm.nih.gov/pubmed/26471992 http://dx.doi.org/10.1186/s12874-015-0080-4 |
Ejemplares similares
-
Simultaneous Decomposition of Depression Heterogeneity on the Person-, Symptom- and Time-Level: The Use of Three-Mode Principal Component Analysis
por: Monden, Rei, et al.
Publicado: (2015) -
An investigation of emotion dynamics in major depressive disorder patients and healthy persons using sparse longitudinal networks
por: de Vos, Stijn, et al.
Publicado: (2017) -
Decomposing the Apoptosis Pathway Into Biologically Interpretable
Principal Components
por: Wang, Min, et al.
Publicado: (2018) -
Diagnostic heterogeneity in psychiatry: towards an empirical solution
por: Wardenaar, Klaas J, et al.
Publicado: (2013) -
Decomposing complex reaction networks using random sampling, principal component analysis and basis rotation
por: Barrett, Christian L, et al.
Publicado: (2009)