Cargando…
Scalable and cost-effective NGS genotyping in the cloud
BACKGROUND: While next-generation sequencing (NGS) costs have plummeted in recent years, cost and complexity of computation remain substantial barriers to the use of NGS in routine clinical care. The clinical potential of NGS will not be realized until robust and routine whole genome sequencing data...
Autores principales: | Souilmi, Yassine, Lancaster, Alex K., Jung, Jae-Yoon, Rizzo, Ettore, Hawkins, Jared B., Powles, Ryan, Amzazi, Saaïd, Ghazal, Hassan, Tonellato, Peter J., Wall, Dennis P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608296/ https://www.ncbi.nlm.nih.gov/pubmed/26470712 http://dx.doi.org/10.1186/s12920-015-0134-9 |
Ejemplares similares
-
COSMOS: cloud enabled NGS analysis
por: Souilmi, Yassine, et al.
Publicado: (2015) -
Cloud Computing for Comparative Genomics with Windows Azure Platform
por: Kim, Insik, et al.
Publicado: (2012) -
Targeted capture-based NGS is superior to multiplex PCR-based NGS for hereditary BRCA1 and BRCA2 gene analysis in FFPE tumor samples
por: Zakrzewski, Falk, et al.
Publicado: (2019) -
Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ)
por: Mascher, Martin, et al.
Publicado: (2013) -
COSMOS: Python library for massively parallel workflows
por: Gafni, Erik, et al.
Publicado: (2014)