Cargando…
Detection of Diffusion Heterogeneity in Single Particle Tracking Trajectories Using a Hidden Markov Model with Measurement Noise Propagation
We develop a Bayesian analysis framework to detect heterogeneity in the diffusive behaviour of single particle trajectories on cells, implementing model selection to classify trajectories as either consistent with Brownian motion or with a two-state (diffusion coefficient) switching model. The incor...
Autores principales: | Slator, Paddy J., Cairo, Christopher W., Burroughs, Nigel J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608688/ https://www.ncbi.nlm.nih.gov/pubmed/26473352 http://dx.doi.org/10.1371/journal.pone.0140759 |
Ejemplares similares
-
A Hidden Markov Model for Detecting Confinement in Single-Particle Tracking Trajectories
por: Slator, Paddy J., et al.
Publicado: (2018) -
A Hidden Markov Model for Single Particle Tracks Quantifies Dynamic Interactions between LFA-1 and the Actin Cytoskeleton
por: Das, Raibatak, et al.
Publicado: (2009) -
Variational Beta Process Hidden Markov Models with Shared Hidden States for Trajectory Recognition
por: Zhao, Jing, et al.
Publicado: (2021) -
Quantitative analysis of peroxisome tracks using a Hidden Markov Model
por: Svensson, Carl-Magnus, et al.
Publicado: (2023) -
Inference in Hidden Markov Models
por: Cappe, Olivier
Publicado: (2005)