Cargando…
Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release
Knockout serum replacement (KOSR) is a nutrient supplement commonly used to replace serum for culturing stem cells. We show here that KOSR has pro-survival activity in chronic myelogenous leukemia (CML) cells transformed by the BCR-ABL oncogene. Inhibitors of BCR-ABL tyrosine kinase kill CML cells b...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608728/ https://www.ncbi.nlm.nih.gov/pubmed/26473951 http://dx.doi.org/10.1371/journal.pone.0140585 |
_version_ | 1782395706053492736 |
---|---|
author | Ishii, Yuki Nhiayi, May Keu Tse, Edison Cheng, Jonathan Massimino, Michele Durden, Donald L. Vigneri, Paolo Wang, Jean Y. J. |
author_facet | Ishii, Yuki Nhiayi, May Keu Tse, Edison Cheng, Jonathan Massimino, Michele Durden, Donald L. Vigneri, Paolo Wang, Jean Y. J. |
author_sort | Ishii, Yuki |
collection | PubMed |
description | Knockout serum replacement (KOSR) is a nutrient supplement commonly used to replace serum for culturing stem cells. We show here that KOSR has pro-survival activity in chronic myelogenous leukemia (CML) cells transformed by the BCR-ABL oncogene. Inhibitors of BCR-ABL tyrosine kinase kill CML cells by stimulating pro-apoptotic BIM and inhibiting anti-apoptotic BCL2, BCLxL and MCL1. We found that KOSR protects CML cells from killing by BCR-ABL inhibitors—imatinib, dasatinib and nilotinib. The protective effect of KOSR is reversible and not due to the selective outgrowth of drug-resistant clones. In KOSR-protected CML cells, imatinib still inhibited the BCR-ABL tyrosine kinase, reduced the phosphorylation of STAT, ERK and AKT, down-regulated BCL2, BCLxL, MCL1 and up-regulated BIM. However, these pro-apoptotic alterations failed to cause cytochrome c release from the mitochondria. With mitochondria isolated from KOSR-cultured CML cells, we showed that addition of recombinant BIM protein also failed to cause cytochrome c release. Besides the kinase inhibitors, KOSR could protect cells from menadione, an inducer of oxidative stress, but it did not protect cells from DNA damaging agents. Switching from serum to KOSR caused a transient increase in reactive oxygen species and AKT phosphorylation in CML cells that were protected by KOSR but not in those that were not protected by this nutrient supplement. Treatment of KOSR-cultured cells with the PH-domain inhibitor MK2206 blocked AKT phosphorylation, abrogated the formation of BIM-resistant mitochondria and stimulated cell death. These results show that KOSR has cell-context dependent pro-survival activity that is linked to AKT activation and the inhibition of BIM-induced cytochrome c release from the mitochondria. |
format | Online Article Text |
id | pubmed-4608728 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46087282015-10-29 Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release Ishii, Yuki Nhiayi, May Keu Tse, Edison Cheng, Jonathan Massimino, Michele Durden, Donald L. Vigneri, Paolo Wang, Jean Y. J. PLoS One Research Article Knockout serum replacement (KOSR) is a nutrient supplement commonly used to replace serum for culturing stem cells. We show here that KOSR has pro-survival activity in chronic myelogenous leukemia (CML) cells transformed by the BCR-ABL oncogene. Inhibitors of BCR-ABL tyrosine kinase kill CML cells by stimulating pro-apoptotic BIM and inhibiting anti-apoptotic BCL2, BCLxL and MCL1. We found that KOSR protects CML cells from killing by BCR-ABL inhibitors—imatinib, dasatinib and nilotinib. The protective effect of KOSR is reversible and not due to the selective outgrowth of drug-resistant clones. In KOSR-protected CML cells, imatinib still inhibited the BCR-ABL tyrosine kinase, reduced the phosphorylation of STAT, ERK and AKT, down-regulated BCL2, BCLxL, MCL1 and up-regulated BIM. However, these pro-apoptotic alterations failed to cause cytochrome c release from the mitochondria. With mitochondria isolated from KOSR-cultured CML cells, we showed that addition of recombinant BIM protein also failed to cause cytochrome c release. Besides the kinase inhibitors, KOSR could protect cells from menadione, an inducer of oxidative stress, but it did not protect cells from DNA damaging agents. Switching from serum to KOSR caused a transient increase in reactive oxygen species and AKT phosphorylation in CML cells that were protected by KOSR but not in those that were not protected by this nutrient supplement. Treatment of KOSR-cultured cells with the PH-domain inhibitor MK2206 blocked AKT phosphorylation, abrogated the formation of BIM-resistant mitochondria and stimulated cell death. These results show that KOSR has cell-context dependent pro-survival activity that is linked to AKT activation and the inhibition of BIM-induced cytochrome c release from the mitochondria. Public Library of Science 2015-10-16 /pmc/articles/PMC4608728/ /pubmed/26473951 http://dx.doi.org/10.1371/journal.pone.0140585 Text en © 2015 Ishii et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ishii, Yuki Nhiayi, May Keu Tse, Edison Cheng, Jonathan Massimino, Michele Durden, Donald L. Vigneri, Paolo Wang, Jean Y. J. Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release |
title | Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release |
title_full | Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release |
title_fullStr | Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release |
title_full_unstemmed | Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release |
title_short | Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release |
title_sort | knockout serum replacement promotes cell survival by preventing bim from inducing mitochondrial cytochrome c release |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608728/ https://www.ncbi.nlm.nih.gov/pubmed/26473951 http://dx.doi.org/10.1371/journal.pone.0140585 |
work_keys_str_mv | AT ishiiyuki knockoutserumreplacementpromotescellsurvivalbypreventingbimfrominducingmitochondrialcytochromecrelease AT nhiayimaykeu knockoutserumreplacementpromotescellsurvivalbypreventingbimfrominducingmitochondrialcytochromecrelease AT tseedison knockoutserumreplacementpromotescellsurvivalbypreventingbimfrominducingmitochondrialcytochromecrelease AT chengjonathan knockoutserumreplacementpromotescellsurvivalbypreventingbimfrominducingmitochondrialcytochromecrelease AT massiminomichele knockoutserumreplacementpromotescellsurvivalbypreventingbimfrominducingmitochondrialcytochromecrelease AT durdendonaldl knockoutserumreplacementpromotescellsurvivalbypreventingbimfrominducingmitochondrialcytochromecrelease AT vigneripaolo knockoutserumreplacementpromotescellsurvivalbypreventingbimfrominducingmitochondrialcytochromecrelease AT wangjeanyj knockoutserumreplacementpromotescellsurvivalbypreventingbimfrominducingmitochondrialcytochromecrelease |