Cargando…
Pain Intensity Recognition Rates via Biopotential Feature Patterns with Support Vector Machines
BACKGROUND: The clinically used methods of pain diagnosis do not allow for objective and robust measurement, and physicians must rely on the patient’s report on the pain sensation. Verbal scales, visual analog scales (VAS) or numeric rating scales (NRS) count among the most common tools, which are r...
Autores principales: | Gruss, Sascha, Treister, Roi, Werner, Philipp, Traue, Harald C., Crawcour, Stephen, Andrade, Adriano, Walter, Steffen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608770/ https://www.ncbi.nlm.nih.gov/pubmed/26474183 http://dx.doi.org/10.1371/journal.pone.0140330 |
Ejemplares similares
-
Automatic vs. Human Recognition of Pain Intensity from Facial Expression on the X-ITE Pain Database
por: Othman, Ehsan, et al.
Publicado: (2021) -
Recognition of Intensive Valence and Arousal Affective States via Facial Electromyographic Activity in Young and Senior Adults
por: Tan, Jun-Wen, et al.
Publicado: (2016) -
Affective Computing and the Impact of Gender and Age
por: Rukavina, Stefanie, et al.
Publicado: (2016) -
The influence of neuroticism and psychological symptoms on the assessment of images in three-dimensional emotion space
por: Walter, Steffen, et al.
Publicado: (2011) -
Automated Electrodermal Activity and Facial Expression Analysis for Continuous Pain Intensity Monitoring on the X-ITE Pain Database
por: Othman, Ehsan, et al.
Publicado: (2023)