Cargando…
Multiple imputation for non-response when estimating HIV prevalence using survey data
BACKGROUND: Missing data are a common feature in many areas of research especially those involving survey data in biological, health and social sciences research. Most of the analyses of the survey data are done taking a complete-case approach, that is taking a list-wise deletion of all cases with m...
Autores principales: | Chinomona, Amos, Mwambi, Henry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4609081/ https://www.ncbi.nlm.nih.gov/pubmed/26475303 http://dx.doi.org/10.1186/s12889-015-2390-1 |
Ejemplares similares
-
Estimating HIV Prevalence in Zimbabwe Using Population-Based Survey Data
por: Chinomona, Amos, et al.
Publicado: (2015) -
Multiple imputation using chained equations for missing data in survival models: applied to multidrug-resistant tuberculosis and HIV data
por: Mbona, Sizwe Vincent, et al.
Publicado: (2023) -
Multiple imputation for handling missing outcome data when estimating the relative risk
por: Sullivan, Thomas R., et al.
Publicado: (2017) -
The effect of high prevalence of missing data on estimation of the coefficients of a logistic regression model when using multiple imputation
por: Austin, Peter C., et al.
Publicado: (2022) -
Multiple imputation and direct estimation for qPCR data with non-detects
por: Sherina, Valeriia, et al.
Publicado: (2020)