Cargando…
A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction
Blood-brain barrier (BBB) is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM) is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature s...
Autores principales: | Zhang, Daqing, Xiao, Jianfeng, Zhou, Nannan, Zheng, Mingyue, Luo, Xiaomin, Jiang, Hualiang, Chen, Kaixian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4609370/ https://www.ncbi.nlm.nih.gov/pubmed/26504797 http://dx.doi.org/10.1155/2015/292683 |
Ejemplares similares
-
Blood–brain barrier penetration prediction enhanced by uncertainty estimation
por: Tong, Xiaochu, et al.
Publicado: (2022) -
Prediction of Cell Penetrating Peptides by Support Vector Machines
por: Sanders, William S., et al.
Publicado: (2011) -
Combinatorial Pharmacophore-Based 3D-QSAR Analysis and Virtual Screening of FGFR1 Inhibitors
por: Zhou, Nannan, et al.
Publicado: (2015) -
Identification of Novel Small Molecules as Inhibitors of Hepatitis C Virus by Structure-Based Virtual Screening
por: Li, Jing, et al.
Publicado: (2013) -
Heart Rate Variability Classification using Support Vector Machine and Genetic Algorithm
por: Ashtiyani, M., et al.
Publicado: (2018)