Cargando…
A Model of Regularization Parameter Determination in Low-Dose X-Ray CT Reconstruction Based on Dictionary Learning
In recent years, X-ray computed tomography (CT) is becoming widely used to reveal patient's anatomical information. However, the side effect of radiation, relating to genetic or cancerous diseases, has caused great public concern. The problem is how to minimize radiation dose significantly whil...
Autores principales: | Zhang, Cheng, Zhang, Tao, Zheng, Jian, Li, Ming, Lu, Yanfei, You, Jiali, Guan, Yihui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4609404/ https://www.ncbi.nlm.nih.gov/pubmed/26550024 http://dx.doi.org/10.1155/2015/831790 |
Ejemplares similares
-
Smoothed l
(0) Norm Regularization for Sparse-View X-Ray CT Reconstruction
por: Li, Ming, et al.
Publicado: (2016) -
Low-dose CT reconstruction via L1 dictionary learning regularization using iteratively reweighted least-squares
por: Zhang, Cheng, et al.
Publicado: (2016) -
Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction
por: Peng, Chengtao, et al.
Publicado: (2017) -
Image reconstruction for positron emission tomography based on patch‐based regularization and dictionary learning
por: Zhang, Wanhong, et al.
Publicado: (2019) -
Influence of X-ray computed tomography (CT) exposure and reconstruction parameters on positron emission tomography (PET) quantitation
por: Ho Shon, Ivan, et al.
Publicado: (2020)