Cargando…
Hybrid RGSA and Support Vector Machine Framework for Three-Dimensional Magnetic Resonance Brain Tumor Classification
A novel hybrid approach for the identification of brain regions using magnetic resonance images accountable for brain tumor is presented in this paper. Classification of medical images is substantial in both clinical and research areas. Magnetic resonance imaging (MRI) modality outperforms towards d...
Autores principales: | Rajesh Sharma, R., Marikkannu, P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4609875/ https://www.ncbi.nlm.nih.gov/pubmed/26509188 http://dx.doi.org/10.1155/2015/184350 |
Ejemplares similares
-
RgsA Attenuates the PKA Signaling, Stress Response, and Virulence in the Human Opportunistic Pathogen Aspergillus fumigatus
por: Lwin, Hnin Phyu, et al.
Publicado: (2019) -
Combining Low-dimensional Wavelet Features and Support Vector Machine for Arrhythmia Beat Classification
por: Qin, Qin, et al.
Publicado: (2017) -
Analysis of the small RNA P16/RgsA in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000
por: Park, So Hae, et al.
Publicado: (2013) -
Magnetic Flux Distribution of Linear Machines with Novel Three-Dimensional Hybrid Magnet Arrays
por: Yao, Nan, et al.
Publicado: (2017) -
Support Vector Machine Implementations for Classification & Clustering
por: Winters-Hilt, Stephen, et al.
Publicado: (2006)