Cargando…
Automatic Spiral Analysis for Objective Assessment of Motor Symptoms in Parkinson’s Disease
A challenge for the clinical management of advanced Parkinson’s disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment ef...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610483/ https://www.ncbi.nlm.nih.gov/pubmed/26393595 http://dx.doi.org/10.3390/s150923727 |
_version_ | 1782395947294130176 |
---|---|
author | Memedi, Mevludin Sadikov, Aleksander Groznik, Vida Žabkar, Jure Možina, Martin Bergquist, Filip Johansson, Anders Haubenberger, Dietrich Nyholm, Dag |
author_facet | Memedi, Mevludin Sadikov, Aleksander Groznik, Vida Žabkar, Jure Možina, Martin Bergquist, Filip Johansson, Anders Haubenberger, Dietrich Nyholm, Dag |
author_sort | Memedi, Mevludin |
collection | PubMed |
description | A challenge for the clinical management of advanced Parkinson’s disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment effects for in-clinic and at-home use that can provide an overview of the treatment response. The objective of this paper was to develop a method for objective quantification of advanced PD motor symptoms related to off episodes and peak dose dyskinesia, using spiral data gathered by a touch screen telemetry device. More specifically, the aim was to objectively characterize motor symptoms (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Digitized upper limb movement data of 65 advanced PD patients and 10 healthy (HE) subjects were recorded as they performed spiral drawing tasks on a touch screen device in their home environment settings. Several spatiotemporal features were extracted from the time series and used as inputs to machine learning methods. The methods were validated against ratings on animated spirals scored by four movement disorder specialists who visually assessed a set of kinematic features and the motor symptom. The ability of the method to discriminate between PD patients and HE subjects and the test-retest reliability of the computed scores were also evaluated. Computed scores correlated well with mean visual ratings of individual kinematic features. The best performing classifier (Multilayer Perceptron) classified the motor symptom (bradykinesia or dyskinesia) with an accuracy of 84% and area under the receiver operating characteristics curve of 0.86 in relation to visual classifications of the raters. In addition, the method provided high discriminating power when distinguishing between PD patients and HE subjects as well as had good test-retest reliability. This study demonstrated the potential of using digital spiral analysis for objective quantification of PD-specific and/or treatment-induced motor symptoms. |
format | Online Article Text |
id | pubmed-4610483 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-46104832015-10-26 Automatic Spiral Analysis for Objective Assessment of Motor Symptoms in Parkinson’s Disease Memedi, Mevludin Sadikov, Aleksander Groznik, Vida Žabkar, Jure Možina, Martin Bergquist, Filip Johansson, Anders Haubenberger, Dietrich Nyholm, Dag Sensors (Basel) Article A challenge for the clinical management of advanced Parkinson’s disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment effects for in-clinic and at-home use that can provide an overview of the treatment response. The objective of this paper was to develop a method for objective quantification of advanced PD motor symptoms related to off episodes and peak dose dyskinesia, using spiral data gathered by a touch screen telemetry device. More specifically, the aim was to objectively characterize motor symptoms (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Digitized upper limb movement data of 65 advanced PD patients and 10 healthy (HE) subjects were recorded as they performed spiral drawing tasks on a touch screen device in their home environment settings. Several spatiotemporal features were extracted from the time series and used as inputs to machine learning methods. The methods were validated against ratings on animated spirals scored by four movement disorder specialists who visually assessed a set of kinematic features and the motor symptom. The ability of the method to discriminate between PD patients and HE subjects and the test-retest reliability of the computed scores were also evaluated. Computed scores correlated well with mean visual ratings of individual kinematic features. The best performing classifier (Multilayer Perceptron) classified the motor symptom (bradykinesia or dyskinesia) with an accuracy of 84% and area under the receiver operating characteristics curve of 0.86 in relation to visual classifications of the raters. In addition, the method provided high discriminating power when distinguishing between PD patients and HE subjects as well as had good test-retest reliability. This study demonstrated the potential of using digital spiral analysis for objective quantification of PD-specific and/or treatment-induced motor symptoms. MDPI 2015-09-17 /pmc/articles/PMC4610483/ /pubmed/26393595 http://dx.doi.org/10.3390/s150923727 Text en © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Memedi, Mevludin Sadikov, Aleksander Groznik, Vida Žabkar, Jure Možina, Martin Bergquist, Filip Johansson, Anders Haubenberger, Dietrich Nyholm, Dag Automatic Spiral Analysis for Objective Assessment of Motor Symptoms in Parkinson’s Disease |
title | Automatic Spiral Analysis for Objective Assessment of Motor Symptoms in Parkinson’s Disease |
title_full | Automatic Spiral Analysis for Objective Assessment of Motor Symptoms in Parkinson’s Disease |
title_fullStr | Automatic Spiral Analysis for Objective Assessment of Motor Symptoms in Parkinson’s Disease |
title_full_unstemmed | Automatic Spiral Analysis for Objective Assessment of Motor Symptoms in Parkinson’s Disease |
title_short | Automatic Spiral Analysis for Objective Assessment of Motor Symptoms in Parkinson’s Disease |
title_sort | automatic spiral analysis for objective assessment of motor symptoms in parkinson’s disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610483/ https://www.ncbi.nlm.nih.gov/pubmed/26393595 http://dx.doi.org/10.3390/s150923727 |
work_keys_str_mv | AT memedimevludin automaticspiralanalysisforobjectiveassessmentofmotorsymptomsinparkinsonsdisease AT sadikovaleksander automaticspiralanalysisforobjectiveassessmentofmotorsymptomsinparkinsonsdisease AT groznikvida automaticspiralanalysisforobjectiveassessmentofmotorsymptomsinparkinsonsdisease AT zabkarjure automaticspiralanalysisforobjectiveassessmentofmotorsymptomsinparkinsonsdisease AT mozinamartin automaticspiralanalysisforobjectiveassessmentofmotorsymptomsinparkinsonsdisease AT bergquistfilip automaticspiralanalysisforobjectiveassessmentofmotorsymptomsinparkinsonsdisease AT johanssonanders automaticspiralanalysisforobjectiveassessmentofmotorsymptomsinparkinsonsdisease AT haubenbergerdietrich automaticspiralanalysisforobjectiveassessmentofmotorsymptomsinparkinsonsdisease AT nyholmdag automaticspiralanalysisforobjectiveassessmentofmotorsymptomsinparkinsonsdisease |