Cargando…
New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images
In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610487/ https://www.ncbi.nlm.nih.gov/pubmed/26378540 http://dx.doi.org/10.3390/s150923004 |
_version_ | 1782395948186468352 |
---|---|
author | Yang, Lei Ren, Yanyun Hu, Huosheng Tian, Bo |
author_facet | Yang, Lei Ren, Yanyun Hu, Huosheng Tian, Bo |
author_sort | Yang, Lei |
collection | PubMed |
description | In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In the pre-processing procedure, the parameters of the Single-Gauss-Model (SGM) are estimated and the coefficients of the floor plane equation are extracted from the background images. Once human subject appears in the scene, the silhouette is extracted by SGM and the foreground coefficient of ellipses is used to determine the head position. The dense spatio-temporal context (STC) algorithm is then applied to track the head position and the distance from the head to floor plane is calculated in every following frame of the depth image. When the distance is lower than an adaptive threshold, the centroid height of the human will be used as the second judgment criteria to decide whether a fall incident happened. Lastly, four groups of experiments with different falling directions are performed. Experimental results show that the proposed method can detect fall incidents that occurred in different orientations, and they only need a low computation complexity. |
format | Online Article Text |
id | pubmed-4610487 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-46104872015-10-26 New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images Yang, Lei Ren, Yanyun Hu, Huosheng Tian, Bo Sensors (Basel) Article In order to deal with the problem of projection occurring in fall detection with two-dimensional (2D) grey or color images, this paper proposed a robust fall detection method based on spatio-temporal context tracking over three-dimensional (3D) depth images that are captured by the Kinect sensor. In the pre-processing procedure, the parameters of the Single-Gauss-Model (SGM) are estimated and the coefficients of the floor plane equation are extracted from the background images. Once human subject appears in the scene, the silhouette is extracted by SGM and the foreground coefficient of ellipses is used to determine the head position. The dense spatio-temporal context (STC) algorithm is then applied to track the head position and the distance from the head to floor plane is calculated in every following frame of the depth image. When the distance is lower than an adaptive threshold, the centroid height of the human will be used as the second judgment criteria to decide whether a fall incident happened. Lastly, four groups of experiments with different falling directions are performed. Experimental results show that the proposed method can detect fall incidents that occurred in different orientations, and they only need a low computation complexity. MDPI 2015-09-11 /pmc/articles/PMC4610487/ /pubmed/26378540 http://dx.doi.org/10.3390/s150923004 Text en © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yang, Lei Ren, Yanyun Hu, Huosheng Tian, Bo New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images |
title | New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images |
title_full | New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images |
title_fullStr | New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images |
title_full_unstemmed | New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images |
title_short | New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images |
title_sort | new fast fall detection method based on spatio-temporal context tracking of head by using depth images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610487/ https://www.ncbi.nlm.nih.gov/pubmed/26378540 http://dx.doi.org/10.3390/s150923004 |
work_keys_str_mv | AT yanglei newfastfalldetectionmethodbasedonspatiotemporalcontexttrackingofheadbyusingdepthimages AT renyanyun newfastfalldetectionmethodbasedonspatiotemporalcontexttrackingofheadbyusingdepthimages AT huhuosheng newfastfalldetectionmethodbasedonspatiotemporalcontexttrackingofheadbyusingdepthimages AT tianbo newfastfalldetectionmethodbasedonspatiotemporalcontexttrackingofheadbyusingdepthimages |