Cargando…
ISAR Imaging Based on the Wideband Hyperbolic Frequency-Modulation Waveform
The hyperbolic frequency-modulated (HFM) waveform has an inherent Doppler-invariant property. It is more conducive than the conventional linear frequency-modulated (LFM) waveform to high speed moving target imaging. In order to apply the HFM waveform to existing inverse synthetic aperture radar (ISA...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610492/ https://www.ncbi.nlm.nih.gov/pubmed/26389901 http://dx.doi.org/10.3390/s150923188 |
Sumario: | The hyperbolic frequency-modulated (HFM) waveform has an inherent Doppler-invariant property. It is more conducive than the conventional linear frequency-modulated (LFM) waveform to high speed moving target imaging. In order to apply the HFM waveform to existing inverse synthetic aperture radar (ISAR) imaging systems, a new pulse compression algorithm is proposed. First, the received HFM echoes are demodulated with the transmitted signal, which is called “decurve” in this paper. By this operation, the bandwidth of the demodulated echoes is effectively reduced and can be processed by the existing narrow-band receiver. Then, the phase of the decurved HFM echoes is analyzed, and thus, the pulse compression is accomplished by space-variant phase compensation. In addition, the space-variant phase compensation is realized by resampling and fast Fourier transform (FFT) with high computational efficiency. Finally, numerical results illustrate the effectiveness of the proposed method. |
---|