Cargando…
Revisiting Gaussian Process Regression Modeling for Localization in Wireless Sensor Networks
Signal strength-based positioning in wireless sensor networks is a key technology for seamless, ubiquitous localization, especially in areas where Global Navigation Satellite System (GNSS) signals propagate poorly. To enable wireless local area network (WLAN) location fingerprinting in larger areas...
Autores principales: | Richter, Philipp, Toledano-Ayala, Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610506/ https://www.ncbi.nlm.nih.gov/pubmed/26370996 http://dx.doi.org/10.3390/s150922587 |
Ejemplares similares
-
Wireless Indoor Localization Using Convolutional Neural Network and Gaussian Process Regression
por: Zhang, Guolong, et al.
Publicado: (2019) -
Iterative Regression Based Hybrid Localization for Wireless Sensor Networks
por: Lee, Kyunghyun, et al.
Publicado: (2021) -
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016) -
Localization Reliability Improvement Using Deep Gaussian Process Regression Model
por: Teng, Fei, et al.
Publicado: (2018) -
Gaussian Process Regression Plus Method for Localization Reliability Improvement
por: Liu, Kehan, et al.
Publicado: (2016)