Cargando…
Validation of Inter-Subject Training for Hidden Markov Models Applied to Gait Phase Detection in Children with Cerebral Palsy
Gait-phase recognition is a necessary functionality to drive robotic rehabilitation devices for lower limbs. Hidden Markov Models (HMMs) represent a viable solution, but they need subject-specific training, making data processing very time-consuming. Here, we validated an inter-subject procedure to...
Autores principales: | Taborri, Juri, Scalona, Emilia, Palermo, Eduardo, Rossi, Stefano, Cappa, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610555/ https://www.ncbi.nlm.nih.gov/pubmed/26404309 http://dx.doi.org/10.3390/s150924514 |
Ejemplares similares
-
Gait Partitioning Methods: A Systematic Review
por: Taborri, Juri, et al.
Publicado: (2016) -
Inter-laboratory and inter-operator reproducibility in gait analysis measurements in pediatric subjects
por: Scalona, Emilia, et al.
Publicado: (2019) -
A Novel HMM Distributed Classifier for the Detection of Gait Phases by Means of a Wearable Inertial Sensor Network
por: Taborri, Juri, et al.
Publicado: (2014) -
Spasticity Measurement Based on Tonic Stretch Reflex Threshold in Children with Cerebral Palsy Using the PediAnklebot
por: Germanotta, Marco, et al.
Publicado: (2017) -
Automatic Detection of Faults in Race Walking: A Comparative Analysis of Machine-Learning Algorithms Fed with Inertial Sensor Data
por: Taborri, Juri, et al.
Publicado: (2019)