Cargando…
RB Particle Filter Time Synchronization Algorithm Based on the DPM Model
Time synchronization is essential for node localization, target tracking, data fusion, and various other Wireless Sensor Network (WSN) applications. To improve the estimation accuracy of continuous clock offset and skew of mobile nodes in WSNs, we propose a novel time synchronization algorithm, the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610564/ https://www.ncbi.nlm.nih.gov/pubmed/26404291 http://dx.doi.org/10.3390/s150922249 |
_version_ | 1782395965607510016 |
---|---|
author | Guo, Chunsheng Shen, Jia Sun, Yao Ying, Na |
author_facet | Guo, Chunsheng Shen, Jia Sun, Yao Ying, Na |
author_sort | Guo, Chunsheng |
collection | PubMed |
description | Time synchronization is essential for node localization, target tracking, data fusion, and various other Wireless Sensor Network (WSN) applications. To improve the estimation accuracy of continuous clock offset and skew of mobile nodes in WSNs, we propose a novel time synchronization algorithm, the Rao-Blackwellised (RB) particle filter time synchronization algorithm based on the Dirichlet process mixture (DPM) model. In a state-space equation with a linear substructure, state variables are divided into linear and non-linear variables by the RB particle filter algorithm. These two variables can be estimated using Kalman filter and particle filter, respectively, which improves the computational efficiency more so than if only the particle filter was used. In addition, the DPM model is used to describe the distribution of non-deterministic delays and to automatically adjust the number of Gaussian mixture model components based on the observational data. This improves the estimation accuracy of clock offset and skew, which allows achieving the time synchronization. The time synchronization performance of this algorithm is also validated by computer simulations and experimental measurements. The results show that the proposed algorithm has a higher time synchronization precision than traditional time synchronization algorithms. |
format | Online Article Text |
id | pubmed-4610564 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-46105642015-10-26 RB Particle Filter Time Synchronization Algorithm Based on the DPM Model Guo, Chunsheng Shen, Jia Sun, Yao Ying, Na Sensors (Basel) Article Time synchronization is essential for node localization, target tracking, data fusion, and various other Wireless Sensor Network (WSN) applications. To improve the estimation accuracy of continuous clock offset and skew of mobile nodes in WSNs, we propose a novel time synchronization algorithm, the Rao-Blackwellised (RB) particle filter time synchronization algorithm based on the Dirichlet process mixture (DPM) model. In a state-space equation with a linear substructure, state variables are divided into linear and non-linear variables by the RB particle filter algorithm. These two variables can be estimated using Kalman filter and particle filter, respectively, which improves the computational efficiency more so than if only the particle filter was used. In addition, the DPM model is used to describe the distribution of non-deterministic delays and to automatically adjust the number of Gaussian mixture model components based on the observational data. This improves the estimation accuracy of clock offset and skew, which allows achieving the time synchronization. The time synchronization performance of this algorithm is also validated by computer simulations and experimental measurements. The results show that the proposed algorithm has a higher time synchronization precision than traditional time synchronization algorithms. MDPI 2015-09-03 /pmc/articles/PMC4610564/ /pubmed/26404291 http://dx.doi.org/10.3390/s150922249 Text en © 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Guo, Chunsheng Shen, Jia Sun, Yao Ying, Na RB Particle Filter Time Synchronization Algorithm Based on the DPM Model |
title | RB Particle Filter Time Synchronization Algorithm Based on the DPM Model |
title_full | RB Particle Filter Time Synchronization Algorithm Based on the DPM Model |
title_fullStr | RB Particle Filter Time Synchronization Algorithm Based on the DPM Model |
title_full_unstemmed | RB Particle Filter Time Synchronization Algorithm Based on the DPM Model |
title_short | RB Particle Filter Time Synchronization Algorithm Based on the DPM Model |
title_sort | rb particle filter time synchronization algorithm based on the dpm model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610564/ https://www.ncbi.nlm.nih.gov/pubmed/26404291 http://dx.doi.org/10.3390/s150922249 |
work_keys_str_mv | AT guochunsheng rbparticlefiltertimesynchronizationalgorithmbasedonthedpmmodel AT shenjia rbparticlefiltertimesynchronizationalgorithmbasedonthedpmmodel AT sunyao rbparticlefiltertimesynchronizationalgorithmbasedonthedpmmodel AT yingna rbparticlefiltertimesynchronizationalgorithmbasedonthedpmmodel |