Cargando…
Flip Chip Bonding of a Quartz MEMS-Based Vibrating Beam Accelerometer
In this study, a novel method to assemble a micro-accelerometer by a flip chip bonding technique is proposed and demonstrated. Both the main two parts of the accelerometer, a double-ended tuning fork and a base-proof mass structure, are fabricated using a quartz wet etching process on Z cut quartz w...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610569/ https://www.ncbi.nlm.nih.gov/pubmed/26340632 http://dx.doi.org/10.3390/s150922049 |
Sumario: | In this study, a novel method to assemble a micro-accelerometer by a flip chip bonding technique is proposed and demonstrated. Both the main two parts of the accelerometer, a double-ended tuning fork and a base-proof mass structure, are fabricated using a quartz wet etching process on Z cut quartz wafers with a thickness of 100 μm and 300 μm, respectively. The finite element method is used to simulate the vibration mode and optimize the sensing element structure. Taking advantage of self-alignment function of the flip chip bonding process, the two parts were precisely bonded at the desired joint position via AuSn solder. Experimental demonstrations were performed on a maximum scale of 4 × 8 mm(2) chip, and high sensitivity up to 9.55 Hz/g with a DETF resonator and a Q value of 5000 in air was achieved. |
---|