Cargando…

An Insertable Passive LC Pressure Sensor Based on an Alumina Ceramic for In Situ Pressure Sensing in High-Temperature Environments

Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiong, Jijun, Li, Chen, Jia, Pinggang, Chen, Xiaoyong, Zhang, Wendong, Liu, Jun, Xue, Chenyang, Tan, Qiulin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610600/
https://www.ncbi.nlm.nih.gov/pubmed/26334279
http://dx.doi.org/10.3390/s150921844
Descripción
Sumario:Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively.