Cargando…

Highly photosensitive graphene field-effect transistor with optical memory function

Graphene is a promising material for use in photodetectors for the ultrawide wavelength region: from ultraviolet to terahertz. Nevertheless, only the 2.3% light absorption of monolayer graphene and fast recombination time of photo-excited charge restrict its sensitivity. To enhance the photosensitiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Ishida, Shohei, Anno, Yuki, Takeuchi, Masato, Matsuoka, Masaya, Takei, Kuniharu, Arie, Takayuki, Akita, Seiji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4611878/
https://www.ncbi.nlm.nih.gov/pubmed/26483089
http://dx.doi.org/10.1038/srep15491
Descripción
Sumario:Graphene is a promising material for use in photodetectors for the ultrawide wavelength region: from ultraviolet to terahertz. Nevertheless, only the 2.3% light absorption of monolayer graphene and fast recombination time of photo-excited charge restrict its sensitivity. To enhance the photosensitivity, hybridization of photosensitive material and graphene has been widely studied, where the accumulated photo-excited charge adjacent to the graphene channel modifies the Fermi level of graphene. However, the charge accumulation process slows the response to around a few tens of seconds to minutes. In contrast, a charge accumulation at the contact would induce the efficient light-induced modification of the contact resistance, which would enhance its photosensitivity. Herein, we demonstrate a highly photosensitive graphene field-effect transistor with noise-equivalent power of ~3 × 10(−15) W/Hz(1/2) and with response time within milliseconds at room temperature, where the Au oxide on Au electrodes modulates the contact resistance because of the light-assisted relaxation of the trapped charge at the contact. Additionally, this light-induced relaxation imparts an optical memory function with retention time of ~5 s. These findings are expected to open avenues to realization of graphene photodetectors with high sensitivity toward single photon detection with optical memory function.