Cargando…
Classification of Incidental Carcinoma of the Prostate Using Learning Vector Quantization and Support Vector Machines
The subclassification of incidental prostatic carcinoma into the categories T1a and T1b is of major prognostic and therapeutic relevance. In this paper an attempt was made to find out which properties mainly predispose to these two tumor categories, and whether it is possible to predict the category...
Autores principales: | Mattfeldt, Torsten, Trijic, Danilo, Gottfried, Hans‐Werner, Kestler, Hans A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOS Press
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4612268/ https://www.ncbi.nlm.nih.gov/pubmed/15371656 http://dx.doi.org/10.1155/2004/982809 |
Ejemplares similares
-
Chromosomal Regions in Prostatic Carcinomas Studied by Comparative Genomic Hybridization, Hierarchical Cluster Analysis and Self-Organizing Feature Maps
por: Mattfeldt, Torsten, et al.
Publicado: (2002) -
Cluster Analysis of Comparative Genomic Hybridization (CGH) Data Using Self-Organizing Maps: Application to Prostate Carcinomas
por: Mattfeldt, Torsten, et al.
Publicado: (2001) -
Support Vector Machine Implementations for Classification & Clustering
por: Winters-Hilt, Stephen, et al.
Publicado: (2006) -
Support Vector Machine Classification of Streptavidin-Binding Aptamers
por: Yu, Xinliang, et al.
Publicado: (2014) -
Support Vector Machine Classification of Drunk Driving Behaviour
por: Chen, Huiqin, et al.
Publicado: (2017)