Cargando…

Isolation of Specific Genomic Regions and Identification of Their Associated Molecules by Engineered DNA-Binding Molecule-Mediated Chromatin Immunoprecipitation (enChIP) Using the CRISPR System and TAL Proteins

Comprehensive understanding of genome functions requires identification of molecules (proteins, RNAs, genomic regions, etc.) bound to specific genomic regions of interest in vivo. To perform biochemical and molecular biological analysis of specific genomic regions, we developed engineered DNA-bindin...

Descripción completa

Detalles Bibliográficos
Autores principales: Fujii, Hodaka, Fujita, Toshitsugu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613281/
https://www.ncbi.nlm.nih.gov/pubmed/26370991
http://dx.doi.org/10.3390/ijms160921802
Descripción
Sumario:Comprehensive understanding of genome functions requires identification of molecules (proteins, RNAs, genomic regions, etc.) bound to specific genomic regions of interest in vivo. To perform biochemical and molecular biological analysis of specific genomic regions, we developed engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) to purify genomic regions of interest. In enChIP, specific genomic regions are tagged for biochemical purification using engineered DNA-binding molecules, such as transcription activator-like (TAL) proteins and a catalytically inactive form of the clustered regularly interspaced short palindromic repeats (CRISPR) system. enChIP is a comprehensive approach that emphasizes non-biased search using next-generation sequencing (NGS), microarrays, mass spectrometry (MS), and other methods. Moreover, this approach is not restricted to cultured cell lines and can be easily extended to organisms. In this review, we discuss applications of enChIP to elucidating the molecular mechanisms underlying genome functions.