Cargando…
Evidence for a CDK4-dependent checkpoint in a conditional model of cellular senescence
Cellular senescence, the stable cell cycle arrest elicited by various forms of stress, is an important facet of tumor suppression. Although much is known about the key players in the implementation of senescence, including the pRb and p53 axes and the cyclin dependent kinase inhibitors p16(INK4a) an...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613988/ https://www.ncbi.nlm.nih.gov/pubmed/25695870 http://dx.doi.org/10.1080/15384101.2015.1010866 |
_version_ | 1782396346228015104 |
---|---|
author | Brookes, Sharon Gagrica, Sladjana Sanij, Elaine Rowe, Janice Gregory, Fiona J Hara, Eiji Peters, Gordon |
author_facet | Brookes, Sharon Gagrica, Sladjana Sanij, Elaine Rowe, Janice Gregory, Fiona J Hara, Eiji Peters, Gordon |
author_sort | Brookes, Sharon |
collection | PubMed |
description | Cellular senescence, the stable cell cycle arrest elicited by various forms of stress, is an important facet of tumor suppression. Although much is known about the key players in the implementation of senescence, including the pRb and p53 axes and the cyclin dependent kinase inhibitors p16(INK4a) and p21(CIP1), many details remain unresolved. In studying conditional senescence in human fibroblasts that express a temperature sensitive SV40 large T-antigen (T-Ag), we uncovered an unexpected role for CDK4. At the permissive temperature, where pRb and p53 are functionally compromised by T-Ag, cyclin D-CDK4 complexes are disrupted by the high p16(INK4a) levels and reduced expression of p21(CIP1). In cells arrested at the non-permissive temperature, p21(CIP1) promotes reassembly of cyclin D-CDK4 yet pRb is in a hypo-phosphorylated state, consistent with cell cycle arrest. In exploring whether the reassembled cyclin D-CDK4-p21 complexes are functional, we found that shRNA-mediated knockdown or chemical inhibition of CDK4 prevented the increase in cell size associated with the senescent phenotype by allowing the cells to arrest in G1 rather than G2/M. The data point to a role for CDK4 kinase activity in a G2 checkpoint that contributes to senescence. |
format | Online Article Text |
id | pubmed-4613988 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-46139882016-02-03 Evidence for a CDK4-dependent checkpoint in a conditional model of cellular senescence Brookes, Sharon Gagrica, Sladjana Sanij, Elaine Rowe, Janice Gregory, Fiona J Hara, Eiji Peters, Gordon Cell Cycle Report Cellular senescence, the stable cell cycle arrest elicited by various forms of stress, is an important facet of tumor suppression. Although much is known about the key players in the implementation of senescence, including the pRb and p53 axes and the cyclin dependent kinase inhibitors p16(INK4a) and p21(CIP1), many details remain unresolved. In studying conditional senescence in human fibroblasts that express a temperature sensitive SV40 large T-antigen (T-Ag), we uncovered an unexpected role for CDK4. At the permissive temperature, where pRb and p53 are functionally compromised by T-Ag, cyclin D-CDK4 complexes are disrupted by the high p16(INK4a) levels and reduced expression of p21(CIP1). In cells arrested at the non-permissive temperature, p21(CIP1) promotes reassembly of cyclin D-CDK4 yet pRb is in a hypo-phosphorylated state, consistent with cell cycle arrest. In exploring whether the reassembled cyclin D-CDK4-p21 complexes are functional, we found that shRNA-mediated knockdown or chemical inhibition of CDK4 prevented the increase in cell size associated with the senescent phenotype by allowing the cells to arrest in G1 rather than G2/M. The data point to a role for CDK4 kinase activity in a G2 checkpoint that contributes to senescence. Taylor & Francis 2015-02-19 /pmc/articles/PMC4613988/ /pubmed/25695870 http://dx.doi.org/10.1080/15384101.2015.1010866 Text en © 2015 The Author(s). Published with license by Taylor & Francis Group, LLC http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted. |
spellingShingle | Report Brookes, Sharon Gagrica, Sladjana Sanij, Elaine Rowe, Janice Gregory, Fiona J Hara, Eiji Peters, Gordon Evidence for a CDK4-dependent checkpoint in a conditional model of cellular senescence |
title | Evidence for a CDK4-dependent checkpoint in a conditional model of cellular senescence |
title_full | Evidence for a CDK4-dependent checkpoint in a conditional model of cellular senescence |
title_fullStr | Evidence for a CDK4-dependent checkpoint in a conditional model of cellular senescence |
title_full_unstemmed | Evidence for a CDK4-dependent checkpoint in a conditional model of cellular senescence |
title_short | Evidence for a CDK4-dependent checkpoint in a conditional model of cellular senescence |
title_sort | evidence for a cdk4-dependent checkpoint in a conditional model of cellular senescence |
topic | Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613988/ https://www.ncbi.nlm.nih.gov/pubmed/25695870 http://dx.doi.org/10.1080/15384101.2015.1010866 |
work_keys_str_mv | AT brookessharon evidenceforacdk4dependentcheckpointinaconditionalmodelofcellularsenescence AT gagricasladjana evidenceforacdk4dependentcheckpointinaconditionalmodelofcellularsenescence AT sanijelaine evidenceforacdk4dependentcheckpointinaconditionalmodelofcellularsenescence AT rowejanice evidenceforacdk4dependentcheckpointinaconditionalmodelofcellularsenescence AT gregoryfionaj evidenceforacdk4dependentcheckpointinaconditionalmodelofcellularsenescence AT haraeiji evidenceforacdk4dependentcheckpointinaconditionalmodelofcellularsenescence AT petersgordon evidenceforacdk4dependentcheckpointinaconditionalmodelofcellularsenescence |